-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgorithms.py
171 lines (143 loc) · 4.83 KB
/
algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import random
import time
import numpy as np
class Algorithm():
def __init__(self):
self.test_bank = {
self.big_O_of_n_control: None,
self.py_sort: None,
self.bubble_sort: None,
self.selection_sort: None,
self.insertion_sort: None,
self.hope_sort: None,
self.merge_sort: None,
self.heapSort: None
}
self.number_of_algorithms = len(self.test_bank)
self.test_dict = {}
def test(self, algorithm, number_of_tests, repeats):
results = []
for test in range(1, number_of_tests + 1):
sum_of_tests = []
for repeat in range(0, repeats):
sum_of_tests.append(self.timer(algorithm, (self.test_dict[test])))
results.append(sum(sum_of_tests) / len(sum_of_tests))
x = [number for number in range(1, number_of_tests + 1)]
y = results
return (x, y)
def generate_test_list(self, number_of_tests=2):
for number in range(1, number_of_tests + 1):
test_list = [value for value in range(1, number + 2)]
random.shuffle(test_list)
self.test_dict[number] = test_list
def timer(self, algorithm, arr):
start_time = time.time()
algorithm(arr)
end_time = time.time()
return end_time - start_time
def regression_equation(self, a, x, b):
return a * np.exp(b * x)
def extrapolate(self, x, y, intended_number_of_tests, number_of_tests):
y = [y_val + 1 for y_val in y]
x = np.array(x)
y = np.array(y)
a, b = np.polyfit(x, np.log(y), 1)
for x_value in range(number_of_tests + 1, intended_number_of_tests + 1):
x = np.append(x, x_value)
y = np.append(y, self.regression_equation(a=a, x=x_value, b=b))
A = np.exp(a)
B = b
print(f"y = {A:.2f} * exp({B:.2f} * x)")
return x, y
def hope_sort(self, arr):
sorted = False
while not sorted:
input = [element for element in arr]
output = []
for _ in range(0, len(arr)):
random_index = random.randint(0, len(input) - 1)
random_element = input.pop(random_index)
output.append(random_element)
sorted = True
for index, element in enumerate(output):
if index != 0:
if output[index - 1] > output[index]:
sorted = False
return output
def py_sort(self, arr):
output = sorted(arr)
return output
def bubble_sort(self, arr):
n = len(arr)
swapped = True
while swapped:
swapped = False
for i in range(n - 1):
if arr[i] > arr[i + 1]:
arr[i], arr[i + 1] = arr[i + 1], arr[i]
swapped = True
n -= 1
return arr
def selection_sort(self, arr):
n = len(arr)
for i in range(n):
min_index = i
for j in range(i + 1, n):
if arr[j] < arr[min_index]:
min_index = j
arr[i], arr[min_index] = arr[min_index], arr[i]
return arr
def insertion_sort(self, arr):
n = len(arr)
for i in range(1, n):
current = arr[i]
j = i - 1
while j >= 0 and arr[j] > current:
arr[j + 1] = arr[j]
j -= 1
arr[j + 1] = current
return arr
def merge(self, left, right):
output = []
i = 0
j = 0
while i < len(left) and j < len(right):
if left[i] < right[i]:
output.append(left[i])
i += 1
else:
output.append(right[j])
j += 1
output.extend(left[i:])
output.extend(right[j:])
return output
def merge_sort(self, arr):
if len(arr) <= 1:
return arr
mid = len(arr) // 2
left = self.merge_sort(arr[:mid])
right = self.merge_sort(arr[mid:])
return self.merge(left, right)
def heapify(self, arr, n, i):
largest = i
l = 2 * i + 1
r = 2 * i + 2
if l < n and arr[i] < arr[l]:
largest = l
if r < n and arr[largest] < arr[r]:
largest = r
if largest != i:
arr[i], arr[largest] = arr[largest], arr[i]
self.heapify(arr, n, largest)
return 0
def heapSort(self, arr):
n = len(arr)
for i in range(n//2 - 1, -1, -1):
self.heapify(arr, n, i)
for i in range(n-1, 0, -1):
arr[i], arr[0] = arr[0], arr[i]
self.heapify(arr, i, 0)
return 0
def big_O_of_n_control(self, arr):
n_steps = [element for element in arr]
return 0