|
| 1 | +import ComplexNumber from '../complex'; |
| 2 | +import fastFourierTransform from '../fastFourierTransform'; |
| 3 | +/** |
| 4 | + * @param {ComplexNumber[]} [seq1] |
| 5 | + * @param {ComplexNumber[]} [seq2] |
| 6 | + * @param {Number} [eps] |
| 7 | + * @return {boolean} |
| 8 | + */ |
| 9 | +function approximatelyEqual(seq1, seq2, eps) { |
| 10 | + if (seq1.length !== seq2.length) { return false; } |
| 11 | + |
| 12 | + for (let i = 0; i < seq1.length; i += 1) { |
| 13 | + if (Math.abs(seq1[i].real - seq2[i].real) > eps) { return false; } |
| 14 | + if (Math.abs(seq1[i].complex - seq2[i].complex) > eps) { return false; } |
| 15 | + } |
| 16 | + |
| 17 | + return true; |
| 18 | +} |
| 19 | + |
| 20 | +describe('fastFourierTransform', () => { |
| 21 | + it('should calculate the radix-2 discrete fourier transform after zero padding', () => { |
| 22 | + const eps = 1e-6; |
| 23 | + const in1 = [new ComplexNumber(0, 0)]; |
| 24 | + const expOut1 = [new ComplexNumber(0, 0)]; |
| 25 | + const out1 = fastFourierTransform(in1); |
| 26 | + const invOut1 = fastFourierTransform(out1, true); |
| 27 | + expect(approximatelyEqual(expOut1, out1, eps)).toBe(true); |
| 28 | + expect(approximatelyEqual(in1, invOut1, eps)).toBe(true); |
| 29 | + |
| 30 | + const in2 = [new ComplexNumber(1, 2), new ComplexNumber(2, 3), |
| 31 | + new ComplexNumber(8, 4)]; |
| 32 | + const expOut2 = [new ComplexNumber(11, 9), new ComplexNumber(-10, 0), |
| 33 | + new ComplexNumber(7, 3), new ComplexNumber(-4, -4)]; |
| 34 | + const out2 = fastFourierTransform(in2); |
| 35 | + const invOut2 = fastFourierTransform(out2, true); |
| 36 | + expect(approximatelyEqual(expOut2, out2, eps)).toBe(true); |
| 37 | + expect(approximatelyEqual(in2, invOut2, eps)).toBe(true); |
| 38 | + |
| 39 | + const in3 = [new ComplexNumber(-83656.9359385182, 98724.08038374918), |
| 40 | + new ComplexNumber(-47537.415125808424, 88441.58381765135), |
| 41 | + new ComplexNumber(-24849.657029355192, -72621.79007878687), |
| 42 | + new ComplexNumber(31451.27290052717, -21113.301128347346), |
| 43 | + new ComplexNumber(13973.90836288876, -73378.36721594246), |
| 44 | + new ComplexNumber(14981.520420492234, 63279.524958963884), |
| 45 | + new ComplexNumber(-9892.575367044381, -81748.44671677813), |
| 46 | + new ComplexNumber(-35933.00356823792, -46153.47157161784), |
| 47 | + new ComplexNumber(-22425.008561855735, -86284.24507370662), |
| 48 | + new ComplexNumber(-39327.43830818355, 30611.949874562706)]; |
| 49 | + const expOut3 = [new ComplexNumber(-203215.3322151, -100242.4827503), |
| 50 | + new ComplexNumber(99217.0805705, 270646.9331932), |
| 51 | + new ComplexNumber(-305990.9040412, 68224.8435751), |
| 52 | + new ComplexNumber(-14135.7758282, 199223.9878095), |
| 53 | + new ComplexNumber(-306965.6350922, 26030.1025439), |
| 54 | + new ComplexNumber(-76477.6755206, 40781.9078990), |
| 55 | + new ComplexNumber(-48409.3099088, 54674.7959662), |
| 56 | + new ComplexNumber(-329683.0131713, 164287.7995937), |
| 57 | + new ComplexNumber(-50485.2048527, -330375.0546527), |
| 58 | + new ComplexNumber(122235.7738708, 91091.6398019), |
| 59 | + new ComplexNumber(47625.8850387, 73497.3981523), |
| 60 | + new ComplexNumber(-15619.8231136, 80804.8685410), |
| 61 | + new ComplexNumber(192234.0276101, 160833.3072355), |
| 62 | + new ComplexNumber(-96389.4195635, 393408.4543872), |
| 63 | + new ComplexNumber(-173449.0825417, 146875.7724104), |
| 64 | + new ComplexNumber(-179002.5662573, 239821.0124341)]; |
| 65 | + const out3 = fastFourierTransform(in3); |
| 66 | + const invOut3 = fastFourierTransform(out3, true); |
| 67 | + expect(approximatelyEqual(expOut3, out3, eps)).toBe(true); |
| 68 | + expect(approximatelyEqual(in3, invOut3, eps)).toBe(true); |
| 69 | + }); |
| 70 | +}); |
0 commit comments