-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathextractor.py
410 lines (371 loc) · 15.5 KB
/
extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import os
import pandas as pd
from frozendict import frozendict
from pm4pymdl.algo.mvp.gen_framework import algorithm as discovery
from pm4pymdl.visualization.mvp.gen_framework import visualizer as vis_factory
from pm4pymdl.algo.mvp.utils import clean_frequency, clean_arc_frequency
dir = r"C:\Users\aless\Documents\sap_extraction"
class Shared:
ekbe = {}
ekpo = {}
vbfa = {}
lips = {}
vbak = {}
activities = {}
events = {}
def read_activities():
tstct = pd.read_csv(os.path.join(dir, "TSTCT.tsv"), sep="\t")
tstct = tstct[tstct["SPRSL"] == "E"]
tstct = tstct[["TCODE", "TTEXT"]]
stream = tstct.to_dict("r")
for row in stream:
Shared.activities[row["TCODE"]] = row["TTEXT"]
def remove_zeros(stru):
i = 0
while i < len(stru):
if not stru[i] == "0":
return stru[i:]
i = i + 1
return stru
def read_ekbe():
ekbe = pd.read_csv(os.path.join(dir, "ekbe.tsv"), sep="\t", dtype={"BELNR": str, "EBELN": str})
ekbe = ekbe[["BELNR", "EBELN"]]
ekbe = ekbe.dropna(subset=["BELNR"])
ekbe = ekbe.dropna(subset=["EBELN"])
stream = ekbe.to_dict("r")
for row in stream:
if not row["BELNR"] in Shared.ekbe:
Shared.ekbe[row["BELNR"]] = set()
Shared.ekbe[row["BELNR"]].add(row["EBELN"])
def read_ekpo():
ekpo = pd.read_csv(os.path.join(dir, "ekpo.tsv"), sep="\t", dtype={"EBELN": str, "BANFN": str})
ekpo = ekpo[["BANFN", "EBELN"]]
ekpo = ekpo.dropna(subset=["BANFN"])
ekpo = ekpo.dropna(subset=["EBELN"])
stream = ekpo.to_dict("r")
for row in stream:
if not row["EBELN"] in Shared.ekpo:
Shared.ekpo[row["EBELN"]] = set()
Shared.ekpo[row["EBELN"]].add(row["BANFN"])
def read_vbfa():
vbfa = pd.read_csv(os.path.join(dir, "vbfa.tsv"), sep="\t", dtype={"VBELN": str, "VBELV": str})
vbfa = vbfa[["VBELV", "VBELN"]]
vbfa = vbfa.dropna(subset=["VBELV"])
vbfa = vbfa.dropna(subset=["VBELN"])
stream = vbfa.to_dict("r")
for row in stream:
if not row["VBELN"] in Shared.vbfa:
Shared.vbfa[row["VBELN"]] = set()
Shared.vbfa[row["VBELN"]].add(row["VBELV"])
def read_lips():
lips = pd.read_csv(os.path.join(dir, "lips.tsv"), sep="\t", dtype={"VBELN": str, "VGBEL": str})
lips = lips[["VBELN", "VGBEL"]]
lips = lips.dropna(subset=["VBELN"])
lips = lips.dropna(subset=["VGBEL"])
stream = lips.to_dict("r")
for row in stream:
if not row["VBELN"] in Shared.lips:
Shared.lips[row["VBELN"]] = set()
Shared.lips[row["VBELN"]].add(row["VGBEL"])
def extract_cdhdr():
cdhdr = pd.read_csv(os.path.join(dir, "cdhdr.tsv"), sep="\t", dtype={"OBJECTCLAS": str, "OBJECTID": str, "CHANGENR": str})
cdhdr = cdhdr[["OBJECTCLAS", "OBJECTID", "USERNAME", "UDATE", "UTIME", "TCODE", "CHANGENR"]]
cdpos = pd.read_csv(os.path.join(dir, "cdpos.tsv"), sep="\t", dtype={"CHANGENR": str, "VALUE_NEW": str})
cdpos = cdpos[["CHANGENR", "VALUE_NEW"]]
merged = pd.merge(cdhdr, cdpos, left_on="CHANGENR", right_on="CHANGENR", suffixes=["", "_2"])
merged = merged.dropna(subset=["VALUE_NEW"])
merged = merged[merged["VALUE_NEW"].isin(merged["OBJECTID"])]
merged = pd.merge(merged, cdhdr, left_on="VALUE_NEW", right_on="OBJECTID", suffixes=["", "_3"])
merged = merged.rename(columns={"USERNAME": "event_resource", "TCODE": "event_activity"})
merged["event_timestamp"] = merged["UDATE"] + " " + merged["UTIME"]
merged["event_timestamp"] = pd.to_datetime(merged["event_timestamp"], format="%d.%m.%Y %H:%M:%S")
merged = merged.dropna(subset=["event_activity"])
merged = merged.dropna(subset=["event_resource"])
stream = merged.to_dict("r")
for ev in stream:
#ev["OBJECTID"] = remove_zeros(ev["OBJECTID"])
#ev["OBJECTID_3"] = remove_zeros(ev["OBJECTID_3"])
key = frozendict({"event_timestamp": ev["event_timestamp"],
"event_resource": ev["event_resource"], "event_activity": ev["event_activity"]})
if key not in Shared.events:
Shared.events[key] = set()
Shared.events[key].add(frozendict({ev["OBJECTCLAS"]: ev["OBJECTID"]}))
Shared.events[key].add(frozendict({ev["OBJECTCLAS_3"]: ev["OBJECTID_3"]}))
def extract_rbkp():
rbkp = pd.read_csv(os.path.join(dir, "rbkp.tsv"), sep="\t", dtype={"BELNR": str})
rbkp = rbkp[["BELNR", "CPUDT", "CPUTM", "USNAM", "TCODE"]]
rbkp = rbkp[rbkp["BELNR"].isin(Shared.ekbe.keys())]
rbkp = rbkp.rename(columns={"USNAM": "event_resource", "TCODE": "event_activity"})
rbkp["event_timestamp"] = rbkp["CPUDT"] + " " + rbkp["CPUTM"]
rbkp["event_timestamp"] = pd.to_datetime(rbkp["event_timestamp"], format="%d.%m.%Y %H:%M:%S")
rbkp = rbkp.dropna(subset=["event_activity"])
rbkp = rbkp.dropna(subset=["event_resource"])
stream = rbkp.to_dict("r")
for ev in stream:
key = frozendict({"event_timestamp": ev["event_timestamp"],
"event_resource": ev["event_resource"], "event_activity": ev["event_activity"]})
if key not in Shared.events:
Shared.events[key] = set()
Shared.events[key].add(frozendict({"BELNR": str(ev["BELNR"])}))
def extract_bkpf():
bkpf = pd.read_csv(os.path.join(dir, "bkpf.tsv"), sep="\t", dtype={"BELNR": str, "AWKEY": str})
bkpf = bkpf[["BELNR", "CPUDT", "CPUTM", "USNAM", "TCODE", "AWKEY"]]
bkpf = bkpf[bkpf["BELNR"].isin(Shared.ekbe.keys()) | bkpf["AWKEY"].isin(Shared.vbak.keys())]
bkpf = bkpf.rename(columns={"USNAM": "event_resource", "TCODE": "event_activity"})
bkpf["event_timestamp"] = bkpf["CPUDT"] + " " + bkpf["CPUTM"]
bkpf["event_timestamp"] = pd.to_datetime(bkpf["event_timestamp"], format="%d.%m.%Y %H:%M:%S")
bkpf = bkpf.dropna(subset=["event_activity"])
bkpf = bkpf.dropna(subset=["event_resource"])
stream = bkpf.to_dict("r")
for ev in stream:
key = frozendict({"event_timestamp": ev["event_timestamp"],
"event_resource": ev["event_resource"], "event_activity": ev["event_activity"]})
if key not in Shared.events:
Shared.events[key] = set()
Shared.events[key].add(frozendict({"BELNR": str(ev["BELNR"])}))
if ev["AWKEY"] in Shared.vbak:
for el in Shared.vbak[ev["AWKEY"]]:
Shared.events[key].add(el)
def extract_eban():
eban = pd.read_csv(os.path.join(dir, "eban.tsv"), sep="\t", dtype={"BANFN": str})
eban = eban[["BANFN", "ERDAT", "ERNAM"]]
eban = eban.rename(columns={"ERNAM": "event_resource", "ERDAT": "event_timestamp"})
eban["event_timestamp"] = pd.to_datetime(eban["event_timestamp"], format="%d.%m.%Y")
eban["event_activity"] = "ME51N"
eban = eban.dropna(subset=["event_activity"])
eban = eban.dropna(subset=["event_resource"])
stream = eban.to_dict("r")
for ev in stream:
key = frozendict({"event_timestamp": ev["event_timestamp"],
"event_resource": ev["event_resource"], "event_activity": ev["event_activity"]})
if key not in Shared.events:
Shared.events[key] = set()
Shared.events[key].add(frozendict({"BANF": str(ev["BANFN"])}))
def extract_ekko():
ekko = pd.read_csv(os.path.join(dir, "ekko.tsv"), sep="\t", dtype={"EBELN": str})
ekko = ekko[["EBELN", "BEDAT", "ERNAM"]]
ekko = ekko.rename(columns={"ERNAM": "event_resource", "BEDAT": "event_timestamp"})
ekko["event_timestamp"] = pd.to_datetime(ekko["event_timestamp"], format="%d.%m.%Y")
ekko["event_activity"] = "ME21N"
ekko = ekko.dropna(subset=["event_activity"])
ekko = ekko.dropna(subset=["event_resource"])
stream = ekko.to_dict("r")
for ev in stream:
key = frozendict({"event_timestamp": ev["event_timestamp"],
"event_resource": ev["event_resource"], "event_activity": ev["event_activity"]})
if key not in Shared.events:
Shared.events[key] = set()
ebeln = str(ev["EBELN"])
Shared.events[key].add(frozendict({"EINKBELEG": ebeln}))
def get_final_dataframe():
stream = []
keys = sorted(list(Shared.events.keys()), key=lambda x: x["event_timestamp"])
id = 0
for index, key in enumerate(keys):
id = id + 1
for obj in Shared.events[key]:
ev = dict(key)
ev.update(dict(obj))
ev["event_id"] = str(id)
stream.append(ev)
act = ev["event_activity"]
ev["event_activity"] = Shared.activities[act] if act in Shared.activities else act
dataframe = pd.DataFrame(stream)
if "MATERIAL" in dataframe.columns:
del dataframe["MATERIAL"]
dataframe.type = "exploded"
return dataframe
def extract_vbak():
vbak = pd.read_csv(os.path.join(dir, "vbak.tsv"), sep="\t", dtype={"VBELN": str, "VBTYP": str})
vbak = vbak[["VBELN", "ERDAT", "ERZET", "ERNAM", "VBTYP"]]
vbak = vbak.rename(columns={"ERNAM": "event_resource"})
vbak["event_timestamp"] = vbak["ERDAT"] + " " + vbak["ERZET"]
vbak["event_timestamp"] = pd.to_datetime(vbak["event_timestamp"], format="%d.%m.%Y %H:%M:%S")
# ['C' 'I' 'B' 'H' 'K' 'G' 'A' 'E' 'F' 'W' 'D' 'L']
# C => Create Sales Order VA01
# I => Create Sales Order w/o charge VA01
# B => Create Sales Quotation VA21
# H => Create Sales Return FB75
"""
A Inquiry
B Quotation
C Order
D Item proposal
E Scheduling agreement
F Scheduling agreement with external service agent
G Contract
H Returns
I Order w / o charge
J Delivery
K Credit memo request
L Debit memo request
M Invoice
N Invoice cancellation
O Credit memo
P Debit memo
Q WMS transfer order
R Goods movement
S Credit memo cancellation
T Returns delivery for order
U Pro forma invoice
V Purchase order
W Independent reqts plan
X Handling unit
"""
vbak = vbak.dropna(subset=["VBTYP"])
vbak = vbak.dropna(subset=["event_resource"])
stream = vbak.to_dict("r")
for ev in stream:
# K => VA01
# G => VA41
# A => VA11
# E => VA31
# F => VA31
# W => MD61
# D => VA51
# L => VA01
activity = None
objtype = None
if ev["VBTYP"] == "K":
activity = "VA01"
objtype = "VERKBELEG" # Create Sales Order
elif ev["VBTYP"] == "G":
activity = "VA41"
objtype = "VERKBELEG" # Create Contract
elif ev["VBTYP"] == "A":
activity = "VA11"
objtype = "VERKBELEG" # Create Inquiry
elif ev["VBTYP"] == "E":
activity = "VA31"
objtype = "VERKBELEG" # Create Scheduling Agreement
elif ev["VBTYP"] == "F":
activity = "VA31"
objtype = "VERKBELEG" # Create Scheduling Agreement
elif ev["VBTYP"] == "W":
activity = "MD61"
objtype = "VERKBELEG" # Create Planned Indep. Requirements
elif ev["VBTYP"] == "D":
activity = "VA51"
objtype = "VERKBELEG" # Create Item Proposal
elif ev["VBTYP"] == "L":
activity = "VA01"
objtype = "VERKBELEG" # Create Sales Order
if activity is not None:
key = frozendict({"event_timestamp": ev["event_timestamp"],
"event_resource": ev["event_resource"], "event_activity": activity})
if key not in Shared.events:
Shared.events[key] = set()
ebeln = str(ev["VBELN"])
xx = frozendict({objtype: ebeln})
Shared.events[key].add(xx)
if ebeln not in Shared.vbak:
Shared.vbak[ebeln] = set()
Shared.vbak[ebeln].add(key)
def extract_likp():
likp = pd.read_csv(os.path.join(dir, "likp.tsv"), sep="\t", dtype={"VBELN": str})
likp = likp.rename(columns={"ERNAM": "event_resource"})
likp["event_timestamp"] = likp["ERDAT"] + " " + likp["ERZET"]
likp["event_timestamp"] = pd.to_datetime(likp["event_timestamp"], format="%d.%m.%Y %H:%M:%S")
likp["event_activity"] = likp["TCODE"]
likp = likp.dropna(subset=["event_activity"])
likp = likp.dropna(subset=["event_resource"])
stream = likp.to_dict("r")
for ev in stream:
key = frozendict({"event_timestamp": ev["event_timestamp"],
"event_resource": ev["event_resource"], "event_activity": ev["event_activity"]})
if key not in Shared.events:
Shared.events[key] = set()
Shared.events[key].add(frozendict({"LIEFERUNG": ev["VBELN"]}))
def insert_ekpo_information():
events = sorted(list(Shared.events.keys()), key=lambda x: x["event_timestamp"])
ebeln_map = {}
for index, eve in enumerate(events):
eve_map = dict()
for val in Shared.events[eve]:
for k in val:
eve_map[k] = val[k]
if "EINKBELEG" in eve_map:
val = eve_map["EINKBELEG"]
if val in Shared.ekpo:
ebeln_map[val] = eve
for n in ebeln_map:
eve = ebeln_map[n]
corr = Shared.ekpo[n]
for el in corr:
Shared.events[eve].add(frozendict({"BANF": el}))
def insert_ekbe_information():
events = sorted(list(Shared.events.keys()), key=lambda x: x["event_timestamp"])
belnr_map = {}
for index, eve in enumerate(events):
eve_map = dict()
for val in Shared.events[eve]:
for k in val:
eve_map[k] = val[k]
if "BELNR" in eve_map:
val = eve_map["BELNR"]
if val in Shared.ekbe:
belnr_map[val] = eve
for n in belnr_map:
eve = belnr_map[n]
corr = Shared.ekbe[n]
for el in corr:
Shared.events[eve].add(frozendict({"EINKBELEG": el}))
def insert_vbfa_information():
events = sorted(list(Shared.events.keys()), key=lambda x: x["event_timestamp"])
vbeln_map = {}
for index, eve in enumerate(events):
eve_map = dict()
for val in Shared.events[eve]:
for k in val:
eve_map[k] = val[k]
if "VBELN" in eve_map:
val = eve_map["VBELN"]
if val in Shared.vbfa:
vbeln_map[val] = eve
for n in vbeln_map:
eve = vbeln_map[n]
corr = Shared.vbfa[n]
for el in corr:
Shared.events[eve].add(frozendict({"VERKBELEG": el}))
def insert_lips_information():
events = sorted(list(Shared.events.keys()), key=lambda x: x["event_timestamp"])
lips_map = {}
for index, eve in enumerate(events):
eve_map = dict()
for val in Shared.events[eve]:
for k in val:
eve_map[k] = val[k]
if "LIEFERUNG" in eve_map:
val = eve_map["LIEFERUNG"]
if val in Shared.lips:
lips_map[val] = eve
for n in lips_map:
eve = lips_map[n]
corr = Shared.lips[n]
for el in corr:
Shared.events[eve].add(frozendict({"VERKBELEG": el}))
if __name__ == "__main__":
read_ekpo()
read_ekbe()
read_vbfa()
read_lips()
read_activities()
extract_cdhdr()
extract_vbak()
extract_eban()
extract_ekko()
#extract_likp()
#extract_rbkp()
#extract_bkpf()
insert_ekpo_information()
insert_ekbe_information()
insert_vbfa_information()
insert_lips_information()
if True:
dataframe = get_final_dataframe()
dataframe = clean_frequency.apply(dataframe, 4)
if True:
model = discovery.apply(dataframe, model_type_variant="model2", node_freq_variant="type21",
edge_freq_variant="type211")
gviz = vis_factory.apply(model, parameters={"format": "svg", "min_edge_freq": 0})
vis_factory.view(gviz)