-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathscreener_csv.py
382 lines (310 loc) · 13 KB
/
screener_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
"""
Note: This is a script used as example for the class:
- For computationally efficient script USE screener.py on
this repository.
Which topics we will work here:
1. System process (make folder - delete folder with data)
2. Data process (gather - cleasing - store in .csv - read .csv)
3. Dates introduction (TimeSeries)
4. List creation and append values
5. Function creations (Technical screener)
6. Conditional statments (screening process)
7. Usage of some librarires (investpy / yfinance - pandas (essentials) - TA)
8. Try/Except and introduction to errors.
This screener the skeleton for a basic market screener. It will help you with:
1. Market Technical Screening
2. Market Alerts Signals
3. Further Analysis you might require
Main difference is on this script you will NOT BE STORING data on your local machine. With it
pros and cons. Because it doesn't store data is computationally more efficient and fast.
For the example, the output of the screener is a prompt print with
the list of tickers stored on the list variables. You can use this lists for further analyisis or
add more.
Example on the script:
country ='Argentina' <- Change this country for the required one
days_back = 120 <- Data gathering from this day. Will impact on the indicators (200SMA won't work on 120 days of data ;-) )
stocks = investpy.get_stocks_overview(country, n_results=1000) <- n_results=1000 For wider markets go for bigger results.
"""
import pandas as pd
import os
import shutil
import investpy
import time
from datetime import datetime, timedelta
import warnings
warnings.filterwarnings('ignore')
# 1. Creamos la carpeta donde se almacenan temporalmente los .csv
# 1. We will create the path were our temporary data will be stored in .csv
if not os.path.exists('data'):
os.mkdir('data')
# 2. Para este ejemplo, leeremos los activos de la propia base de datos.
# 2. On this particular script, we will read our data from the database.
country ='Argentina'
days_back = 120
today = datetime.now()
start = today -timedelta(days_back)
today = datetime.strftime(today, '%d/%m/%Y')
start = datetime.strftime(start, '%d/%m/%Y')
stocks = investpy.get_stocks_overview(country, n_results=1000)
stocks = stocks.drop_duplicates(subset='symbol')
# 3. Seleccionamos la ruta en la que estará nuestro proyecto con el final en \data puesto que ahí se almacenará la información.
# 3. Select the path in where our project will be stored. Remember end on \data puesto que ahí se almacenará la información.
path = (r"data")
# 4. Manejo de fechas. Recordad modificar days_back si necesitamos indicadores con más longitud de datos (mm200, etc.)
# 4. Date handling. Remember to modify days_back in case we need indicators with longer data (sma200, etc.)
today = datetime.now()
start = today -timedelta(days_back)
today = datetime.strftime(today, '%d/%m/%Y')
start = datetime.strftime(start, '%d/%m/%Y')
# 5. Proceso de solicitud de datos a través de la librería investpy para el documento especies.csv columna (Ticker)
# 5. Data gathering process through investpy library for especies.csv on (Ticker) column
count = 0
for ticker in stocks['symbol']:
try:
count += 1
df = investpy.get_stock_historical_data(stock=ticker,country=country,from_date=f'{start}', to_date=f'{today}')
df= df.rename(columns={"Close": "Adj Close"})
# print(f'Analyzing {count}.....{ticker}')
# print(df.info()) <== To see what you're getting
df.to_csv(fr'data/{ticker}.csv')
time.sleep(0.25)
except Exception as e:
print(e)
print(f'No data on {ticker}')
# 6. A continuación definiremos algún ejemplo de funciones técnicas utilizando
# la librería TA para análisis técnico. Modificar al gusto de cada usuario.
# Además, crearemos las listas para añadir nuestros ticker que cumplan con el screener.
# 6. Following we will write some functions in order to retreive the technical
# indicator from TA, add it to our dataframe and define logics for the signals.
# On top, we will create the list to fulfill with the tickers filtered.
b_out = []
cons = []
mcd_up = []
mcd_up0 = []
mcd_d = []
mcd_d0 = []
bb_up = []
already_bb_up = []
bb_d = []
already_bb_d = []
rsi_d = []
on_rsi_d = []
on_rsi_up = []
rsi_up = []
rsi_bf_d = []
rsi_bf_up = []
def MACD_signal_up(df):
"""
This Function will analyze the SIGNAL UP on the MACD of the asset
Asset MACD on Crossover SIGNAL and Asset MACD Crossover below 0
"""
from ta.trend import MACD
indicator_macd = MACD(df['Adj Close'])
df['MACD'] = indicator_macd.macd()
df['Signal']= indicator_macd.macd_signal()
df['MACD Histogram']= indicator_macd.macd_diff()
df['Below_0_Crossover_MACD_Signal'] = False
df['Simple_Crossover_MACD_Signal'] = False
# MACD Crossover logics
if (df[-2:]['MACD'].values[0] <= df[-1:]['MACD'].values[0]) and (df[-2:]['MACD'].values[0] <= df[-2:]['Signal'].values[0]) and (df[-1:]['MACD'].values[0]>=df[-1:]['Signal'].values[0]):
# MACD crossover AND Below 0
if (df[-2:]['MACD'].values[0] <= df[-1:]['MACD'].values[0]) and (df[-2:]['MACD'].values[0] <= df[-2:]['Signal'].values[0]) and (df[-1:]['MACD'].values[0]>=df[-1:]['Signal'].values[0]) and df[-1:]['MACD'].values[0]<= 0:
mcd_up0.append(symbol)
df['Below_0_Crossover_MACD_Signal'][-1] = True
else:
mcd_up.append(symbol)
df['Simple_Crossover_MACD_Signal'][-1] = True
df['Below_0_Crossover_MACD_Signal'][-1] = False
return True
return False
def MACD_signal_down(df):
"""
This Function will analyze the SIGNAL DOWN on the MACD asset
Asset MACD on Crossunder SIGNAL and Asset MACD Crossunder above 0
"""
from ta.trend import MACD
indicator_macd = MACD(df['Adj Close'])
df['MACD'] = indicator_macd.macd()
df['Signal']= indicator_macd.macd_signal()
df['MACD Histogram']= indicator_macd.macd_diff()
df['Simple_Crossdown_MACD_Signal'] = False
df['Above_0_Crossunder_MACD_Signal'] = False
# MACD croosunder
if (df[-2:]['MACD'].values[0] >= df[-1:]['MACD'].values[0]) and (df[-2:]['MACD'].values[0] >= df[-2:]['Signal'].values[0]) and (df[-1:]['MACD'].values[0]<=df[-1:]['Signal'].values[0]):
# MACD crossunder AND above 0
if (df[-2:]['MACD'].values[0] >= df[-1:]['MACD'].values[0]) and (df[-2:]['MACD'].values[0] >= df[-2:]['Signal'].values[0]) and (df[-1:]['MACD'].values[0]<=df[-1:]['Signal'].values[0]) and df[-1:]['MACD'].values[0]>= 0:
mcd_d0.append(symbol)
df['Above_0_Crossunder_MACD_Signal'][-1] = True
else:
mcd_d.append(symbol)
df['Simple_Crossdown_MACD_Signal'][-1] = True
df['Above_0_Crossunder_MACD_Signal'][-1] = False
return True
return False
def Bollinger_signal_up(df, window=20, window_dev=2):
"""
This Function will analyze the Bollinger UP on the asset
Bollinger Up signal, Asset already above upper Bollinger Band
"""
from ta.volatility import BollingerBands
indicator_bb = BollingerBands(df["Adj Close"], 20, 2)
df['bb_bbm'] = indicator_bb.bollinger_mavg()
df['bb_bbh'] = indicator_bb.bollinger_hband()
df['bb_bbl'] = indicator_bb.bollinger_lband()
df['bb_bbhi'] = indicator_bb.bollinger_hband_indicator()
df['bb_bbli'] = indicator_bb.bollinger_lband_indicator()
df['Boll_UP'] = False
df['Boll_UP2']= False
# Asset on Upper Bollinger Band Signal
if (df[-2:]['bb_bbhi'].values[0] == 0) and (df[-1:]['bb_bbhi'].values[0] == 1):
df['Boll_UP'][-1] = True
bb_up.append(symbol)
return True
# Asset already avobe Upper Bollinger Band
elif (df[-2:]['bb_bbhi'].values[0] == 1) and (df[-1:]['bb_bbhi'].values[0] == 1):
df['Boll_UP2'][-1] = True
already_bb_up.append(symbol)
return True
return False
def Bollinger_signal_down(df, window=20, window_dev=2):
"""
This Function will analyze the Bollinger DOWN on the asset
Bollinger down signal, Asset already below lower Bollinger Band
"""
from ta.volatility import BollingerBands
indicator_bb = BollingerBands(df["Adj Close"], 20, 2)
df['bb_bbm'] = indicator_bb.bollinger_mavg()
df['bb_bbh'] = indicator_bb.bollinger_hband()
df['bb_bbl'] = indicator_bb.bollinger_lband()
df['bb_bbhi'] = indicator_bb.bollinger_hband_indicator()
df['bb_bbli'] = indicator_bb.bollinger_lband_indicator()
df['Boll_Down'] = False
df['Boll_Down2']= False
# Asset on Signal Lower Bollinger Band
if (df[-2:]['bb_bbli'].values[0] == 0) and (df[-1:]['bb_bbli'].values[0] == 1):
bb_d.append(symbol)
df['Boll_Down'][-1]= True
return True
# Asset already below lower Bollinger
elif (df[-2:]['bb_bbli'].values[0] == 1) and (df[-1:]['bb_bbli'].values[0] == 1):
already_bb_d.append(symbol)
df['Boll_Down2'][-1]= True
return True
return False
def RSI_signal_up(df, window = 14):
"""
This Function will analyze the SIGNAL UP on the RSI asset
Overbought signal, Asset already Overbought and asset back to range from Overbought
"""
from ta.momentum import RSIIndicator
indicator_rsi= RSIIndicator(df['Adj Close'], window= 14)
df['RSI'] = indicator_rsi.rsi()
df['RSI_Overbought'] = False
# Asset back to range 70-30 from Overbought
if (df[-2:]['RSI'].values[0] >= 70) and (df[-1:]['RSI'].values[0] <= 70):
rsi_bf_up.append(symbol)
# Asset on RSI > 70
if (df[-1:]['RSI'].values[0] >= 70):
on_rsi_up.append(symbol)
df['RSI_Overbought'][-1] = True
# RSI Overbought SIGNAL
if (df[-2:]['RSI'].values[0] <= 70) and (df[-1:]['RSI'].values[0] >= 70):
rsi_up.append(symbol)
return True
return False
def RSI_signal_down(df, window= 14):
"""
This Function will analyze the SIGNAL DOWN on the RSI asset
Oversold signal, Asset already oversold and asset back to range from oversold
"""
from ta.momentum import RSIIndicator
indicator_rsi= RSIIndicator(df['Adj Close'], window= 14)
df['RSI'] = indicator_rsi.rsi()
df['RSI_Oversold'] = False
# Asset back to range 30-70 from Oversold
if (df[-2:]['RSI'].values[0] <= 30) and (df[-1:]['RSI'].values[0] >= 30):
rsi_bf_d.append(symbol)
# Asset on RSI < 30
if (df[-1:]['RSI'].values[0] <= 30):
on_rsi_d.append(symbol)
df['RSI_Oversold'][-1] = True
# RSI just crossed down SIGNAL
if (df[-2:]['RSI'].values[0] >= 30) and (df[-1:]['RSI'].values[0] <= 30):
rsi_d.append(symbol)
return True
return False
# Price action Functions (candlesticks patterns, consolidations, breakouts etc.)
def consolidating_signal(df, perc = 3.5):
"""
This Function will analyze the asset is consolidating within the perc range.
Ex: perc =3.5 means the closing price within the last 15 sessions, hasn't changed
further than 3.5%
"""
range_of_candlesticks= df[-15:]
max_close_price = range_of_candlesticks['Adj Close'].max()
min_close_price = range_of_candlesticks['Adj Close'].min()
threshold_detection = 1 - (perc / 100)
if min_close_price > (max_close_price * threshold_detection):
cons.append(symbol)
return True
return False
def breaking_out_signal(df, perc=1,):
"""
This Function will analyze the an asset which is coming out from a consolidation
period.
[perc] = will be the threshold in % for the closing price to determinate if the asset is
under consolidation.
On the example perc = 1, the asset will be closing within 1% range on the last 15 sessions and then
on current candle is breaking out.
"""
last_close = df[-1:]['Adj Close'].values[0]
if consolidating_signal(df[:-1], perc = perc):
recent_close = df[-16:-1]
if last_close > recent_close['Adj Close'].max():
b_out.append(symbol)
return True
return False
# START SCREENER with our data stored in .CSV format
print(f'--------- GENERAL MARKET SCREENER in {country} for {len(stocks)} assets: data analyzed from {start} until {today} --------\n')
for filename in os.listdir(path):
df = pd.read_csv(path+f'\{filename}')
symbol = filename.split(".")[0]
if breaking_out_signal(df, 3):
pass
if consolidating_signal(df, perc=2):
pass
if RSI_signal_up(df):
pass
if RSI_signal_down(df):
pass
if MACD_signal_up(df):
pass
if MACD_signal_down(df):
pass
if Bollinger_signal_up(df):
pass
if Bollinger_signal_down(df):
pass
# OUTPUT
print('--- BOLLINGER ANALYSIS --- \n')
print(f'The stocks on SIGNAL BOLLINGER UP are:\n==> {bb_up}\n')
print(f'The stocks are already in BOLLINGER UP:\n==> {already_bb_up}\n')
print(f'The stocks on SIGNAL BOLLINGER DOWN are:\n==> {bb_d}\n')
print(f'The stocks are already in BOLLINGER_DOWN:\n==> {already_bb_d}\n')
print('--- MACD ANALYSIS --- \n')
print(f'The stocks on MACD SIGNAL UP are:\n==> {mcd_up}\n')
print(f'The stocks on MACD SIGNAL UP BELOW 0 are:\n==> {mcd_up0}\n')
print(f'The stocks on MACD SIGNAL DOWN are:\n==> {mcd_d} \n')
print(f'The stocks on MACD SIGNAL DOWN above 0 are:\n==> {mcd_d0}\n')
print('--- RSI ANALYSIS --- \n')
print(f'The stocks on OVERBOUGHT SIGNAL [RSI] are:\n==> {rsi_up}\n')
print(f'The stocks on OVERSOLD SIGNAL [RSI] are:\n==> {rsi_d}\n')
print(f'The stocks went to RANGE from OVERSOLD are:\n==> {rsi_bf_d}\n')
print(f'The stocks went to RANGE from OVERBOUGHT are:\n==> {rsi_bf_up}\n')
print(f'The stocks on OVERBOUGHT [RSI] are:\n==> {on_rsi_up}\n')
print(f'The stocks on OVERSOLD [RSI] are:\n==> {on_rsi_d}\n')
print('--- PRICE ACTION ANALYSIS --- \n')
print(f'The stocks on CONSOLIDATION are:\n==> {cons}\n')
print(f'The stocks on BREAKOUT are:\n==> {b_out}\n')
# Delete stored information UNCOMMENT IF WANT TO REMOVE AFTER SCREENER
shutil.rmtree(path)