-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess.py
290 lines (217 loc) · 9.93 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import json
import os
import pickle
from typing import Dict, List
import nltk
import numpy as np
import pandas as pd
import spacy
from nltk.stem import WordNetLemmatizer
from nltk.stem.snowball import SnowballStemmer
from nltk.tokenize import sent_tokenize
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
import web.services.verbnet_service as verbnet_service
import web.services.wordnet_service as wordnet_service
from web.services.verb_definition import SenseData
class Processor:
def __init__(self):
print('Initialising...')
#Parameters
self.corpus = "full"
self.max_score = 0.9
self.min_score = 0.001
# self.stemmer = SnowballStemmer("english") # Type: nltk.stem.api.StemmerI
self.lemmatizer = WordNetLemmatizer()
self.spacy = spacy.load('en_core_web_lg')
with open('blacklist.txt', 'r') as blacklist_file:
blacklist = blacklist_file.read().strip().split('\n') # type: List[str]
blacklist = list(
filter(lambda word: word and not word.startswith('#'), blacklist)
)
self.blacklist = blacklist
self.removed_via_blacklist = set()
def run(self):
print('Begin run')
try:
with open(f'text_{self.corpus}/weights.pickle', 'rb') as handle:
weights_df = pickle.load(handle)
except FileNotFoundError:
weights_df = self._extract_word_values()
with open(f'text_{self.corpus}/weights.pickle', 'wb') as handle:
pickle.dump(weights_df, handle, protocol=pickle.HIGHEST_PROTOCOL)
stemmed_verb_instances, verb_examples = self._extract_verbs_from_documents()
self._save_results(stemmed_verb_instances, verb_examples, weights_df)
######### private methods ##########
def _extract_word_values(self):
'Calculates tf-idf values for words in the documents'
stemmedFileNames = list(
filter(lambda fname: fname.endswith(
'stemmed.txt'), os.listdir('text_' + self.corpus))
)
file_locations = list(
map(lambda file_name: f'text_{self.corpus}/{file_name}', stemmedFileNames)
)
print('Counting terms...')
cvec = CountVectorizer(stop_words='english', min_df=0.001,
max_df=0.9, ngram_range=(1, 2), input='filename')
cvec.fit(file_locations)
print(f'Total n-grams = {len(cvec.vocabulary_)}')
cvec_counts = cvec.transform(file_locations)
# print('sparse matrix shape:', cvec_counts.shape)
print('nonzero count:', cvec_counts.nnz)
# print('sparsity: %.2f%%' % (100.0 * cvec_counts.nnz / (cvec_counts.shape[0] * cvec_counts.shape[1])))
# occ = np.asarray(cvec_counts.sum(axis=0)).ravel().tolist()
# counts_df = pd.DataFrame(
# {'term': cvec.get_feature_names(), 'occurrences': occ})
# top_values = counts_df.sort_values(by='occurrences', ascending=False).head(20)
transformer = TfidfTransformer()
transformed_weights = transformer.fit_transform(cvec_counts)
weights = np.asarray(transformed_weights.mean(axis=0)).ravel().tolist()
weights_df = pd.DataFrame(
{'term': cvec.get_feature_names(), 'weight': weights})
# sorted_weights = weights_df.sort_values(by='weight', ascending=False)
return weights_df
def _extract_verbs_from_documents(self):
'Performs POS tagging to identify verbs, and extract an example sentence for each'
verb_examples = dict() # Type:dict[string, str]
stemmed_verb_instances = dict() # Type:dict[string, set]
i = 0
files_in_dir = os.listdir('text_' + self.corpus)
print('Extracting verbs from file ', i,
' of ', len(files_in_dir), end='\r')
for file in files_in_dir:
if i % 10 == 0:
print('Extracting verbs from file ', i,
' of ', len(files_in_dir)/2, end='\r')
filename = os.fsdecode(file)
if filename.endswith('-stemmed.txt') or not filename.endswith('.txt'):
continue
with open(f'text_{self.corpus}/{filename}', 'r') as myFile:
sentences = sent_tokenize(myFile.read())
clean_sentences = []
for sentence in sentences:
split_sentences = sentence.split('\n')
clean_sentences = clean_sentences + split_sentences
for sentence in clean_sentences:
list_of_verbs = self._list_verbs(sentence)
local_verb_examples = dict(
(self.lemmatizer.lemmatize(verb, pos='v').lower(), sentence) for verb in list_of_verbs)
for verb in list_of_verbs:
stemmed = self.lemmatizer.lemmatize(verb, pos='v').lower()
if stemmed in self.blacklist:
self.removed_via_blacklist.add(stemmed)
continue
try:
(stemmed_verb_instances[stemmed]).add(
verb.lower())
except KeyError:
stemmed_verb_instances[stemmed] = set(
[verb.lower()])
verb_examples.update(dict(local_verb_examples))
i += 1
print('\n')
return stemmed_verb_instances, verb_examples
def _list_verbs(self, sentence:str):
# words = nltk.word_tokenize(sentence)
# pos_tags = nltk.pos_tag(words)
parsed = self.spacy(sentence)
pos_tags = list(map(lambda word: (word.text, word.pos_), parsed))
verb_list = list(
map(lambda tup: tup[0],
filter(lambda tup: tup[1] == 'VERB', pos_tags)
)
)
for verb in verb_list:
if verb in self.blacklist:
self.removed_via_blacklist.add(verb)
verb_list.remove(verb)
return verb_list
def _save_results(self,
stemmed_verb_instances: Dict[str, set],
verb_examples: Dict[str, str],
weights_df: pd.DataFrame
):
'Saves results to a JSON file'
new_dict = {}
verbs_not_found = []
wordnet_only = []
vb_themrole_value_error = []
not_physics_verb = []
for verb in verb_examples:
stemmed_verb = self.lemmatizer.lemmatize(verb, pos='v').lower()
try:
value = weights_df[weights_df.term == stemmed_verb].weight.values[0]
except IndexError:
# print('Not indexed: ', stemmed_verb)
continue
if value < self.min_score: # tf-idf limit
continue
try:
lemm = self.lemmatizer.lemmatize(
next(iter(stemmed_verb_instances[stemmed_verb])),
pos='v').lower()
except KeyError:
print('Missing: ', stemmed_verb)
continue
try:
if verbnet_service.is_physics_verb(lemm):
senses = verbnet_service.get_corpus_ids(lemm) # Type: List[VerbData]
else:
not_physics_verb.append(lemm)
continue
except (verbnet_service.NotInVerbNetException, ValueError) as e:
if type(e) == ValueError:
vb_themrole_value_error.append(verb)
if wordnet_service.is_verb(lemm):
senses = wordnet_service.get_corpus_ids(lemm) # Type: List[VerbData]
wordnet_only.append(lemm)
else:
verbs_not_found.append(lemm)
continue
lemm_info = SenseData()
lemm_info.score = value
lemm_info.example = verb_examples[stemmed_verb]
lemm_info.instances = list(stemmed_verb_instances[stemmed_verb])
lemm_info.database_ids = senses
new_dict[lemm] = lemm_info
verbs_in_synsets = dict()
for lemma, verb_data in new_dict.items():
for sense in verb_data.database_ids:
if not sense.synset:
continue
if sense.synset in verbs_in_synsets.keys():
verbs_in_synsets[sense.synset].add(lemma)
else:
verbs_in_synsets[sense.synset] = set([lemma])
file_data = {
'directory': new_dict,
'synsets': verbs_in_synsets
}
print('Saving file...')
with open("web/static/results.json", "w") as tempFile:
json.dump(file_data, tempFile, default=_encode_for_json)
with open(f"web/static/results-{self.corpus}.json", "w") as tempFile:
json.dump(file_data, tempFile, default=_encode_for_json)
log_data = {
"verbs_not_found": verbs_not_found,
"wordnet_only": wordnet_only,
"removed_via_blacklist": list(self.removed_via_blacklist),
"vb_themrole_value_error":vb_themrole_value_error,
"not_physics_verb": not_physics_verb
}
with open("process_log.json", "w") as tempFile:
json.dump(log_data, tempFile, default=_encode_for_json)
error_num = len(verbs_not_found) + len(wordnet_only) + len(self.removed_via_blacklist)
full_num = len(new_dict) + error_num
print(f'{(error_num/full_num)*100}% error rate in POS')
def _encode_for_json(obj):
if type(obj) == set:
return list(obj)
output = obj.__dict__
for key, value in output.items():
if type(value) == set:
output[key] = list(value)
return output
if __name__ == "__main__":
processor = Processor()
processor.run()