-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
58 lines (51 loc) · 2.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import numpy as np
import torch
import random
from learner import Learner
import argparse
# init learner
def init_seeds(seed):
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Partition-and-Debias (ICCV 2022)')
parser.add_argument("--model", help="which network, [ResNet18, PnD]", default= 'PnD', type=str)
parser.add_argument("--batch_size", help="batch_size", default=128, type=int)
parser.add_argument("--lr1",help='learning rate',default=0.001, type=float)
parser.add_argument("--lr2",help='learning rate',default=0.0005, type=float)
parser.add_argument("--lr_decay_step1", help="learning rate decay steps", type=int, default=20)
parser.add_argument("--lr_decay_step2", help="learning rate decay steps", type=int, default=20)
parser.add_argument("--lr_gamma", help="lr gamma", type=float, default=0.5)
parser.add_argument("--temperature",help='temperature',default=0.1, type=float)
parser.add_argument("--weight_decay",help='weight_decay',default=1e-5, type=float)
parser.add_argument("--loss_q",help='loss_q',default=0.7, type=float)
parser.add_argument("--alpha1",help='wdc',default=0.2, type=float)
parser.add_argument("--alpha2",help='wdc',default=2.0, type=float)
parser.add_argument("--beta", help="beta", type=float, default=4.0)
parser.add_argument("--num_workers", help="workers number", default=16, type=int)
parser.add_argument("--device", help="cuda or cpu", default='cuda:5', type=str)
parser.add_argument("--num_epochs1", help="# of epochs", default= 70, type=int)
parser.add_argument("--num_epochs2", help="# of epochs", default= 100, type=int)
parser.add_argument("--dataset", help="data to train", default= 'bmnist', type=str)
parser.add_argument("--percent", help="percentage of conflict", default= "1pct", type=str)
parser.add_argument("--target_attr_idx", help="target_attr_idx", default= 0, type=int)
parser.add_argument("--q", help="GCE parameter q", type=float, default=0.7)
parser.add_argument("--gamma",help='gamma',default=2, type=float)
parser.add_argument("--ema_alpha", help="use weight mul", type=float, default=0.7)
parser.add_argument("--exp", help='experiment name', default='debugging', type=str)
parser.add_argument("--log_dir", help='path for saving model', default='./log', type=str)
parser.add_argument("--data_dir", help='path for loading data', default='dataset', type=str)
parser.add_argument("--seed", help="seed", default=1997, type=int)
args = parser.parse_args()
init_seeds(args.seed)
# init learner
learner = Learner(args)
# actual training
print('Training starts ...')
print(" # PID :", os.getpid())
learner.train_ours_step1(args)
learner.train_ours_step2(args)
learner.test_ours()