-
Notifications
You must be signed in to change notification settings - Fork 448
/
Copy pathopencv_103.py
44 lines (38 loc) · 1.37 KB
/
opencv_103.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import cv2 as cv
import os
import numpy as np
# 把目标图放在64x128的灰色图片中间,方便计算描述子
def get_hog_descriptor(image):
hog = cv.HOGDescriptor()
h, w = image.shape[:2]
rate = 64 / w
image = cv.resize(image, (64, np.int(rate*h)))
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
bg = np.zeros((128, 64), dtype=np.uint8)
bg[:,:] = 127
h, w = gray.shape
dy = (128 - h) // 2
bg[dy:h+dy,:] = gray
fv = hog.compute(bg, winStride=(8, 8), padding=(0, 0))
return fv
def get_data(train_data, labels, path, lableType):
for file_name in os.listdir(path):
img_dir = os.path.join(path, file_name)
img = cv.imread(img_dir)
hog_desc = get_hog_descriptor(img)
one_fv = np.zeros([len(hog_desc)], dtype=np.float32)
for i in range(len(hog_desc)):
one_fv[i] = hog_desc[i][0]
train_data.append(one_fv)
labels.append(lableType)
return train_data, labels
def get_dataset(pdir, ndir):
train_data = []
labels = []
train_data, labels = get_data(train_data, labels, pdir, lableType=1)
train_data, labels = get_data(train_data, labels, ndir, lableType=-1)
return np.array(train_data, dtype=np.float32), np.array(labels, dtype=np.int32)
if __name__ == '__main__':
a, b = get_dataset("pdir/", "ndir/")
#cv.destroyAllWindows()
print(a.shape, b.shape)