|
| 1 | +import numpy as np |
| 2 | +import pandas as pd |
| 3 | +from sklearn.neighbors import KNeighborsClassifier |
| 4 | +from sklearn.model_selection import train_test_split |
| 5 | +from FS.pso import jfs |
| 6 | +import matplotlib.pyplot as plt |
| 7 | + |
| 8 | + |
| 9 | +# load data |
| 10 | +data = pd.read_csv('ionosphere.csv') |
| 11 | +data = data.values |
| 12 | +feat = np.asarray(data[:, 0:-1]) |
| 13 | +label = np.asarray(data[:, -1]) |
| 14 | + |
| 15 | +# split data into train & validation using k-fold cross-validation |
| 16 | +xtrain, xtest, ytrain, ytest = train_test_split(feat, label, test_size=0.3, stratify=label) |
| 17 | +fold = {'xt':xtrain, 'yt':ytrain, 'xv':xtest, 'yv':ytest} |
| 18 | + |
| 19 | +# feature selection |
| 20 | +k = 5 |
| 21 | +opts = {'k':k, 'fold':fold, 'N':10, 'T':100, 'w':0.9, 'c1':2, 'c2':2} |
| 22 | + |
| 23 | +fmdl = jfs(feat, label, opts) |
| 24 | +sf = fmdl['sf'] |
| 25 | + |
| 26 | +# model with selected features |
| 27 | +num_train = np.size(xtrain, 0) |
| 28 | +num_valid = np.size(xtest, 0) |
| 29 | +x_train = xtrain[:, sf] |
| 30 | +y_train = ytrain.reshape(num_train) # Solve bug |
| 31 | +x_valid = xtest[:, sf] |
| 32 | +y_valid = ytest.reshape(num_valid) # Solve bug |
| 33 | + |
| 34 | +mdl = KNeighborsClassifier(n_neighbors = k) |
| 35 | +mdl.fit(x_train, y_train) |
| 36 | + |
| 37 | +# validation accuracy |
| 38 | +pred = mdl.predict(x_valid) |
| 39 | +correct = 0 |
| 40 | +for i in range(num_valid): |
| 41 | + if pred[i] == y_valid[i]: |
| 42 | + correct += 1 |
| 43 | + |
| 44 | +accuracy = correct / num_valid |
| 45 | +print("Accuracy:", 100 * accuracy) |
| 46 | + |
| 47 | +# number of selected features |
| 48 | +num_feat = fmdl['nf'] |
| 49 | +print("Feature Size:", num_feat) |
| 50 | + |
| 51 | +# plot convergence |
| 52 | +curve = fmdl['c'] |
| 53 | +curve = curve.reshape(np.size(curve,1)) |
| 54 | +x = np.arange(0, opts['T'], 1.0) + 1.0 |
| 55 | + |
| 56 | +fig, ax = plt.subplots() |
| 57 | +ax.plot(x, curve, 'o-') |
| 58 | +ax.set_xlabel('Number of Iterations') |
| 59 | +ax.set_ylabel('Fitness') |
| 60 | +ax.set_title('PSO') |
| 61 | +ax.grid() |
| 62 | +plt.show() |
| 63 | + |
0 commit comments