-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathjAtomSearchOptimization.m
149 lines (141 loc) · 3.54 KB
/
jAtomSearchOptimization.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
%[2019]-"Atom search optimization and its application to solve a
%hydrogeologic parameter estimation problem"
% (8/12/2020)
function ASO = jAtomSearchOptimization(feat,label,opts)
% Parameters
lb = 0;
ub = 1;
thres = 0.5;
alpha = 50; % depth weight
beta = 0.2; % multiplier weight
if isfield(opts,'N'), N = opts.N; end
if isfield(opts,'T'), max_Iter = opts.T; end
if isfield(opts,'alpha'), alpha = opts.alpha; end
if isfield(opts,'beta'), beta = opts.beta; end
if isfield(opts,'thres'), thres = opts.thres; end
% Objective function
fun = @jFitnessFunction;
% Number of dimensions
dim = size(feat,2);
% Initial
X = zeros(N,dim);
for i = 1:N
for d = 1:dim
X(i,d) = lb + (ub - lb) * rand();
end
end
V = zeros(N,dim);
for i = 1:N
for d = 1:dim
V(i,d) = lb + (ub - lb) * rand();
end
end
% Pre
temp_A = zeros(N,dim);
fitG = inf;
fit = zeros(1,N);
curve = inf;
t = 1;
% Iteration
while t <= max_Iter
for i = 1:N
% Fitness
fit(i) = fun(feat,label,(X(i,:) > thres),opts);
% Best update
if fit(i) < fitG
fitG = fit(i);
Xbest = X(i,:);
end
end
% Best & worst fitness (28-29)
fitB = min(fit);
fitW = max(fit);
% Number of K neighbor (32)
Kbest = ceil(N - (N - 2) * sqrt(t / max_Iter));
% Mass (26)
M = exp(-(fit - fitB) ./ (fitW - fitB));
% Normalized mass (27)
M = M ./ sum(M);
% Sort normalized mass in descending order
[~, idx_M] = sort(M,'descend');
% Contsraint force (23-24)
G = exp(-20 * t / max_Iter);
E = zeros(N,dim);
for i = 1:N
XK(1,:) = sum(X(idx_M(1:Kbest),:),1) / Kbest;
% Length scale (17)
scale_dist = norm(X(i,:) - XK(1,:),2);
for ii = 1:Kbest
% Select neighbor with higher mass
j = idx_M(ii);
% Get LJ-potential
Po = jLJPotential(X(i,:),X(j,:),t,max_Iter,scale_dist);
% Distance
dist = norm(X(i,:) - X(j,:),2);
for d = 1:dim
% Update (25)
E(i,d) = E(i,d) + rand() * Po * ((X(j,d) - X(i,d)) / ...
(dist + eps));
end
end
for d = 1:dim
E(i,d) = alpha * E(i,d) + beta * (Xbest(d) - X(i,d));
% Calculate part of acceleration (25)
temp_A(i,d) = E(i,d) / M(i);
end
end
% Update
for i = 1:N
for d = 1:dim
% Acceleration (25)
Acce = temp_A(i,d) * G;
% Velocity update (30)
V(i,d) = rand() * V(i,d) + Acce;
% Position update (31)
X(i,d) = X(i,d) + V(i,d);
end
% Boundary
XB = X(i,:); XB(XB > ub) = ub; XB(XB <lb) = lb;
X(i,:) = XB;
end
curve(t) = fitG;
fprintf('\nIteration %d Best (ASO)= %f',t,curve(t))
t = t + 1;
end
% Select features based on selected index
Pos = 1:dim;
Sf = Pos((Xbest > thres) == 1);
sFeat = feat(:,Sf);
% Store results
ASO.sf = Sf;
ASO.ff = sFeat;
ASO.nf = length(Sf);
ASO.c = curve;
ASO.f = feat;
ASO.l = label;
end
%// LJ-Potential //
function Potential = jLJPotential(X1,X2,t,max_Iter,scale_dist)
% Calculate LJ-potential
h0 = 1.1;
u = 1.24;
% Equilibration distance [Assume 1.12*(17)~=(17)]
r = norm(X1 - X2,2);
% Depth function (15)
n = (1 - (t - 1) / max_Iter) .^ 3;
% Drift factor (19)
g = 0.1 * sin((pi / 2) * (t / max_Iter));
% Hmax & Hmin (18)
Hmin = h0 + g;
Hmax = u;
% Compute H (16)
if r / scale_dist < Hmin
H = Hmin;
elseif r / scale_dist > Hmax
H = Hmax;
else
H = r / scale_dist;
end
% Revised version (14,25)
Potential = n * (12 * (-H) ^ (-13) - 6 * (-H) ^ (-7));
end