-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathjFlowerPollinationAlgorithm.m
124 lines (113 loc) · 2.67 KB
/
jFlowerPollinationAlgorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
%[2012]-"Flower pollination algorithm for global optimization"
% (9/12/2020)
function FPA = jFlowerPollinationAlgorithm(feat,label,opts)
% Parameters
lb = 0;
ub = 1;
thres = 0.5;
beta = 1.5; % levy component
P = 0.8; % switch probability
if isfield(opts,'N'), N = opts.N; end
if isfield(opts,'P'), P = opts.P; end
if isfield(opts,'T'), max_Iter = opts.T; end
if isfield(opts,'beta'), beta = opts.beta; end
if isfield(opts,'thres'), thres = opts.thres; end
% Objective function
fun = @jFitnessFunction;
% Number of dimensions
dim = size(feat,2);
% Initial
X = zeros(N,dim);
for i = 1:N
for d = 1:dim
X(i,d) = lb + (ub - lb) * rand();
end
end
% Compute fitness
fit = zeros(1,N);
fitG = inf;
for i = 1:N
fit(i) =fun(feat,label,(X(i,:) > thres),opts);
% Best flower
if fit(i) < fitG
fitG = fit(i);
Xgb = X(i,:);
end
end
% Pre
Xnew = zeros(N,dim);
curve = zeros(1,max_Iter);
curve(1) = fitG;
t = 2;
% Iterations
while t <= max_Iter
for i = 1:N
% Global pollination
if rand() < P
% Levy distribution (2)
L = jLevyDistribution(beta,dim);
for d = 1:dim
% Global pollination (1)
Xnew(i,d) = X(i,d) + L(d) * (X(i,d) - Xgb(d));
end
% Local pollination
else
% Different flower j, k in same species
R = randperm(N);
J = R(1);
K = R(2);
% Epsilon [0 to 1]
eps = rand();
for d = 1:dim
% Local pollination (3)
Xnew(i,d) = X(i,d) + eps * (X(J,d) - X(K,d));
end
end
% Check boundary
XB = Xnew(i,:); XB(XB > ub) = ub; XB(XB < lb) = lb;
Xnew(i,:) = XB;
end
% Fitness
for i = 1:N
% Compute fitness
Fnew = fun(feat,label,(Xnew(i,:) > thres),opts);
% Update if there is better solution
if Fnew <= fit(i)
X(i,:) = Xnew(i,:);
fit(i) = Fnew;
end
% Best flower
if fit(i) < fitG
Xgb = X(i,:);
fitG = fit(i);
end
end
curve(t) = fitG;
fprintf('\nIteration %d Best (FPA)= %f',t,curve(t))
t = t + 1;
end
% Select features
Pos = 1:dim;
Sf = Pos((Xgb > thres) == 1);
sFeat = feat(:,Sf);
% Store results
FPA.sf = Sf;
FPA.ff = sFeat;
FPA.nf = length(Sf);
FPA.c = curve;
FPA.f = feat;
FPA.l = label;
end
%// Levy Flight //
function LF = jLevyDistribution(beta,dim)
% Sigma
nume = gamma(1 + beta) * sin(pi * beta / 2);
deno = gamma((1 + beta) / 2) * beta * 2 ^ ((beta - 1) / 2);
sigma = (nume / deno) ^ (1 / beta);
% Parameter u & v
u = randn(1,dim) * sigma;
v = randn(1,dim);
% Step
step = u ./ abs(v) .^ (1 / beta);
LF = 0.01 * step;
end