-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathjGeneralizedNormalDistributionOptimization.m
140 lines (132 loc) · 3.21 KB
/
jGeneralizedNormalDistributionOptimization.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
%[2020]-"Generalized normal distribution optimization and its
%applications in parameter extraction of photovoltaic models"
% (8/12/2020)
function GNDO = jGeneralizedNormalDistributionOptimization(...
feat,label,opts)
% Parameters
lb = 0;
ub = 1;
thres = 0.5;
if isfield(opts,'N'), N = opts.N; end
if isfield(opts,'T'), max_Iter = opts.T; end
if isfield(opts,'thres'), thres = opts.thres; end
% Objective function
fun = @jFitnessFunction;
% Number of dimensions
dim = size(feat,2);
% Initial (26)
X = zeros(N,dim);
for i = 1:N
for d = 1:dim
X(i,d) = lb + (ub - lb) * rand();
end
end
% Fitness
fit = zeros(1,N);
fitG = inf;
for i = 1:N
fit(i) = fun(feat,label,(X(i,:) > thres),opts);
% Best
if fit(i) < fitG
fitG = fit(i);
Xb = X(i,:);
end
end
% Pre
V = zeros(N,dim);
curve = zeros(1,max_Iter);
curve(1) = fitG;
t = 2;
% Iteration
while t <= max_Iter
% Compute mean position (22)
M = mean(X,1);
for i = 1:N
alpha = rand();
% [Local exploitation]
if alpha > 0.5
% Random numbers
a = rand();
b = rand();
for d = 1:dim
% Compute mean (19)
mu = (1/3) * (X(i,d) + Xb(d) + M(d));
% Compute standard deviation (20)
delta = sqrt((1/3) * ((X(i,d) - mu) ^ 2 + ...
(Xb(d) - mu) ^ 2 + (M(d) - mu) ^ 2));
% Compute eta (21)
lambda1 = rand();
lambda2 = rand();
if a <= b
eta = sqrt(-1 * log(lambda1)) * cos(2 * pi * lambda2);
else
eta = sqrt(-1 * log(lambda1)) * cos(2 * pi * lambda2 + pi);
end
% Generate normal ditribution (18)
V(i,d) = mu + delta * eta;
end
% [Global Exploitation]
else
% Random three vectors but not i
RN = randperm(N); RN(RN == i) = [];
p1 = RN(1);
p2 = RN(2);
p3 = RN(3);
% Random beta
beta = rand();
% Normal random number: zero mean & unit variance
lambda3 = randn();
lambda4 = randn();
% Get v1 (24)
if fit(i) < fit(p1)
v1 = X(i,:) - X(p1,:);
else
v1 = X(p1,:) - X(i,:);
end
% Get v2 (25)
if fit(p2) < fit(p3)
v2 = X(p2,:) - X(p3,:);
else
v2 = X(p3,:) - X(p2,:);
end
% Generate new position (23)
for d = 1:dim
V(i,d) = X(i,d) + beta * (abs(lambda3) * v1(d)) + ...
(1 - beta) * (abs(lambda4) * v2(d));
end
end
% Boundary
XB = V(i,:); XB(XB > ub) = ub; XB(XB < lb) = lb;
V(i,:) = XB;
end
% Fitness
for i = 1:N
fitV = fun(feat,label,(V(i,:) > thres),opts);
% Greedy selection (27)
if fitV < fit(i)
fit(i) = fitV;
X(i,:) = V(i,:);
end
% Best
if fit(i) < fitG
fitG = fit(i);
Xb = X(i,:);
end
end
% Save
curve(t) = fitG;
fprintf('\nIteration %d Best (GNDO)= %f',t,curve(t))
t = t + 1;
end
% Select features based on selected index
Pos = 1:dim;
Sf = Pos((Xb > thres) == 1);
sFeat = feat(:,Sf);
% Store results
GNDO.sf = Sf;
GNDO.ff = sFeat;
GNDO.nf = length(Sf);
GNDO.c = curve;
GNDO.f = feat;
GNDO.l = label;
end