-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathjSalpSwarmAlgorithm.m
91 lines (81 loc) · 1.84 KB
/
jSalpSwarmAlgorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
%[2017]-"Salp swarm algorithm: A bio-inspired optimizer for engineering
%design problems"
% (8/12/2020)
function SSA = jSalpSwarmAlgorithm(feat,label,opts)
% Parameters
lb = 0;
ub = 1;
thres = 0.5;
if isfield(opts,'T'), max_Iter = opts.T; end
if isfield(opts,'N'), N = opts.N; end
if isfield(opts,'thres'), thres = opts.thres; end
% Objective function
fun = @jFitnessFunction;
% Number of dimensions
dim = size(feat,2);
% Initial
X = zeros(N,dim);
for i = 1:N
for d = 1:dim
X(i,d) = lb + (ub - lb) * rand();
end
end
% Pre
fit = zeros(1,N);
fitF = inf;
curve = inf;
t = 1;
% Iteration
while t <= max_Iter
for i = 1:N
% Fitness
fit(i) = fun(feat,label,(X(i,:) > thres),opts);
% Best food update
if fit(i) < fitF
Xf = X(i,:);
fitF = fit(i);
end
end
% Compute coefficient, c1 (3.2)
c1 = 2 * exp(-(4 * t / max_Iter) ^ 2);
for i = 1:N
% Leader update
if i == 1
for d = 1:dim
% Coefficient c2 & c3 [0~1]
c2 = rand();
c3 = rand();
% Leader update (3.1)
if c3 >= 0.5
X(i,d) = Xf(d) + c1 * ((ub - lb) * c2 + lb);
else
X(i,d) = Xf(d) - c1 * ((ub - lb) * c2 + lb);
end
end
% Salp update
elseif i >= 2
for d = 1:dim
% Salp update by following front salp (3.4)
X(i,d) = (X(i,d) + X(i-1,d)) / 2;
end
end
% Boundary
XB = X(i,:); XB(XB > ub) = ub; XB(XB < lb) = lb;
X(i,:) = XB;
end
curve(t) = fitF;
fprintf('\nIteration %d Best (SSA)= %f',t,curve(t))
t = t + 1;
end
% Select features
Pos = 1:dim;
Sf = Pos((Xf > thres) == 1);
sFeat = feat(:,Sf);
% Store results
SSA.sf = Sf;
SSA.ff = sFeat;
SSA.nf = length(Sf);
SSA.c = curve;
SSA.f = feat;
SSA.l = label;
end