-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
36 lines (31 loc) · 1.52 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch.utils.data
from util import *
from torch.utils.data import DataLoader
from dataset import dataset_loader
from model.model_full import MDEDNet
if __name__ == '__main__':
model_path = os.path.join('checkpoints/mded.pth')
device = torch.device('cuda:0')
model = MDEDNet().to(device)
print('model parameters: [%.2f] M'%(sum(param.numel() for param in model.parameters())/1e6))
model.load_state_dict(torch.load(model_path))
model.eval()
save_path_deblur = os.path.join('results/deblur')
save_path_denoise = os.path.join('results/denoise')
if not os.path.exists(save_path_deblur):
os.makedirs(save_path_deblur)
if not os.path.exists(save_path_denoise):
os.makedirs(save_path_denoise)
test_dataset = dataset_loader()
test_loader = DataLoader(dataset=test_dataset, num_workers=8, batch_size=1)
for iteration, data in enumerate(test_loader):
with torch.no_grad():
blur = data['blur'].to(device)
sharp = data['sharp'].to(device)
event_noise = data['event_noise'].to(device)
deblur,event_denoise = model(blur,event_noise)
name = data['name']
save_path_denblur_ = os.path.join(save_path_deblur,name[0]+'.png')
save_path_denoise_ = os.path.join(save_path_denoise,name[0]+'.png')
img_save(deblur,save_path_denblur_)
save_tensor_to_npy(event_denoise,save_path_denoise_)