@@ -86,15 +86,18 @@ SparseArrays.SparseMatrixCSC(R::ARM) = SparseMatrixCSC(R.data)
86
86
# Documentation strings and dispatch to `recurrence_matrix`
87
87
# ###############################################################################
88
88
"""
89
- RecurrenceMatrix(x, ε ; metric = Euclidean(), parallel::Bool)
89
+ RecurrenceMatrix(x, rthres ; metric = Euclidean(), parallel::Bool)
90
90
91
- Create a recurrence matrix from trajectory `x`
92
- and with recurrence threshold specification `ε `.
91
+ Create a recurrence matrix from timeseries or trajectory `x`
92
+ and with recurrence threshold `rthres `.
93
93
`x` is either a [`StateSpaceSet`](@ref) for multivariate data
94
94
or an `AbstractVector{<:Real}` for timeseries.
95
95
96
- If `ε::Real` is given, a [`RecurrenceThreshold`](@ref) is used to specify recurrences.
97
- Otherwise, any subtype of [`AbstractRecurrenceType`](@ref) may be given as `ε` instead.
96
+ The variable `rthres` defines how recurrences are estimated.
97
+ It can be any subtype of [`AbstractRecurrenceType`](@ref),
98
+ and different types can specify recurrences differently.
99
+ Alternatively, `rthres` can be a real number, which then becomes
100
+ an instance of [`RecurrenceThreshold`](@ref).
98
101
99
102
The keyword `metric`, if given, must be any subtype of `Metric` from
100
103
[Distances.jl](https://github.com/JuliaStats/Distances.jl)
@@ -166,16 +169,16 @@ end
166
169
167
170
168
171
"""
169
- CrossRecurrenceMatrix(x, y, ε ; kwargs...)
172
+ CrossRecurrenceMatrix(x, y, rthres ; kwargs...)
170
173
171
174
Create a cross recurrence matrix from trajectories `x` and `y`.
172
- See [`RecurrenceMatrix`](@ref) for possible value for `ε ` and `kwargs`.
175
+ See [`RecurrenceMatrix`](@ref) for possible value for `rthres ` and `kwargs`.
173
176
174
177
The cross recurrence matrix is a bivariate extension of the recurrence matrix.
175
178
For the time series `x`, `y`, of length `n` and `m`, respectively, it is a
176
179
sparse `n×m` matrix of Boolean values.
177
180
178
- Note that cross recurrence matrices are generally not symmetric irrespectively of `ε `.
181
+ Note that cross recurrence matrices are generally not symmetric irrespectively of `rthres `.
179
182
"""
180
183
function CrossRecurrenceMatrix (x, y, ε;
181
184
# DEPRECATED keywords. TODO : Remove them in next stable release.
@@ -203,10 +206,10 @@ function CrossRecurrenceMatrix(x, y, ε;
203
206
end
204
207
205
208
"""
206
- JointRecurrenceMatrix(x, y, ε ; kwargs...)
209
+ JointRecurrenceMatrix(x, y, rthres ; kwargs...)
207
210
208
211
Create a joint recurrence matrix from trajectories `x` and `y`.
209
- See [`RecurrenceMatrix`](@ref) for possible values for `ε ` and `kwargs`.
212
+ See [`RecurrenceMatrix`](@ref) for possible values for `rthres ` and `kwargs`.
210
213
211
214
The joint recurrence matrix considers the recurrences of the trajectories
212
215
of `x` and `y` separately, and looks for points where both recur
0 commit comments