31
31
eigen(A::Union{Hermitian, Symmetric}; alg::LinearAlgebra.Algorithm = LinearAlgebra.default_eigen_alg(A)) -> Eigen
32
32
33
33
Compute the eigenvalue decomposition of `A`, returning an [`Eigen`](@ref) factorization object `F`
34
- which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the
34
+ which contains the eigenvalues in `F.values` and the orthonormal eigenvectors in the columns of the
35
35
matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.)
36
36
37
37
Iterating the decomposition produces the components `F.values` and `F.vectors`.
@@ -76,7 +76,7 @@ eigen!(A::RealHermSymComplexHerm{<:BlasReal,<:StridedMatrix}, irange::UnitRange)
76
76
eigen(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> Eigen
77
77
78
78
Compute the eigenvalue decomposition of `A`, returning an [`Eigen`](@ref) factorization object `F`
79
- which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the
79
+ which contains the eigenvalues in `F.values` and the orthonormal eigenvectors in the columns of the
80
80
matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.)
81
81
82
82
Iterating the decomposition produces the components `F.values` and `F.vectors`.
@@ -101,7 +101,7 @@ eigen!(A::RealHermSymComplexHerm{T,<:StridedMatrix}, vl::Real, vh::Real) where {
101
101
eigen(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> Eigen
102
102
103
103
Compute the eigenvalue decomposition of `A`, returning an [`Eigen`](@ref) factorization object `F`
104
- which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the
104
+ which contains the eigenvalues in `F.values` and the orthonormal eigenvectors in the columns of the
105
105
matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.)
106
106
107
107
Iterating the decomposition produces the components `F.values` and `F.vectors`.
0 commit comments