-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdensity.jl
193 lines (142 loc) · 5.36 KB
/
density.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
###################################################################
# Abstract types and methods
abstract type AbstractDensity <: Function end
@inline DensityKind(::AbstractDensity) = IsDensity()
import DensityInterface
####################################################################################
# Density
"""
struct Density{M,B} <: AbstractDensity
μ::M
base::B
end
For measures `μ` and `ν`, `Density(μ,ν)` represents the _density function_
`dμ/dν`, also called the _Radon-Nikodym derivative_:
https://en.wikipedia.org/wiki/Radon%E2%80%93Nikodym_theorem#Radon%E2%80%93Nikodym_derivative
Instead of calling this directly, users should call `density_rel(μ, ν)` or
its abbreviated form, `𝒹(μ,ν)`.
"""
struct Density{M,B} <: AbstractDensity
μ::M
base::B
end
Base.:∘(::typeof(log), d::Density) = logdensity_rel(d.μ, d.base)
Base.log(d::Density) = log ∘ d
export 𝒹
"""
𝒹(μ, base)
Compute the density (Radon-Nikodym derivative) of μ with respect to `base`. This
is a shorthand form for `density_rel(μ, base)`.
"""
𝒹(μ, base) = density_rel(μ, base)
density_rel(μ, base) = Density(μ, base)
(f::Density)(x) = density_rel(f.μ, f.base, x)
DensityInterface.logfuncdensity(d::Density) = throw(MethodError(logfuncdensity, (d,)))
####################################################################################
# LogDensity
"""
struct LogDensity{M,B} <: AbstractDensity
μ::M
base::B
end
For measures `μ` and `ν`, `LogDensity(μ,ν)` represents the _log-density function_
`log(dμ/dν)`, also called the _Radon-Nikodym derivative_:
https://en.wikipedia.org/wiki/Radon%E2%80%93Nikodym_theorem#Radon%E2%80%93Nikodym_derivative
Instead of calling this directly, users should call `logdensity_rel(μ, ν)` or
its abbreviated form, `log𝒹(μ,ν)`.
"""
struct LogDensity{M,B} <: AbstractDensity
μ::M
base::B
end
Base.:∘(::typeof(exp), d::LogDensity) = density_rel(d.μ, d.base)
Base.exp(d::LogDensity) = exp ∘ d
export log𝒹
"""
log𝒹(μ, base)
Compute the log-density (Radon-Nikodym derivative) of μ with respect to `base`.
This is a shorthand form for `logdensity_rel(μ, base)`
"""
log𝒹(μ, base) = logdensity_rel(μ, base)
logdensity_rel(μ, base) = LogDensity(μ, base)
(f::LogDensity)(x) = logdensity_rel(f.μ, f.base, x)
DensityInterface.funcdensity(d::LogDensity) = throw(MethodError(funcdensity, (d,)))
#######################################################################################
# DensityMeasure
"""
struct DensityMeasure{F,B} <: AbstractDensityMeasure
density :: F
base :: B
end
A `DensityMeasure` is a measure defined by a density or log-density with respect
to some other "base" measure.
Users should not call `DensityMeasure` directly, but should instead call `∫(f,
base)` (if `f` is a density function or `DensityInterface.IsDensity` object) or
`∫exp(f, base)` (if `f` is a log-density function).
"""
struct DensityMeasure{F,B} <: AbstractMeasure
f::F
base::B
function DensityMeasure(f::F, base::B) where {F,B}
@assert DensityKind(f) isa IsDensity
new{F,B}(f, base)
end
end
@inline function insupport(d::DensityMeasure, x)
insupport(d.base, x) == true && isfinite(logdensityof(getfield(d, :f), x))
end
function Pretty.tile(μ::DensityMeasure{F,B}) where {F,B}
result = Pretty.literal("DensityMeasure ∫(")
result *= Pretty.pair_layout(Pretty.tile(μ.f), Pretty.tile(μ.base); sep = ", ")
result *= Pretty.literal(")")
end
export ∫
"""
∫(f, base::AbstractMeasure)
Define a new measure in terms of a density `f` over some measure `base`.
"""
∫(f, base) = _densitymeasure(f, base, DensityKind(f))
_densitymeasure(f, base, ::IsDensity) = DensityMeasure(f, base)
function _densitymeasure(f, base, ::HasDensity)
@error "`∫(f, base)` requires `DensityKind(f)` to be `IsDensity()` or `NoDensity()`."
end
_densitymeasure(f, base, ::NoDensity) = DensityMeasure(funcdensity(f), base)
export ∫exp
"""
∫exp(f, base::AbstractMeasure)
Define a new measure in terms of a log-density `f` over some measure `base`.
"""
∫exp(f, base) = _logdensitymeasure(f, base, DensityKind(f))
function _logdensitymeasure(f, base, ::IsDensity)
@error "`∫exp(f, base)` is not valid when `DensityKind(f) == IsDensity()`. Use `∫(f, base)` instead."
end
function _logdensitymeasure(f, base, ::HasDensity)
@error "`∫exp(f, base)` is not valid when `DensityKind(f) == HasDensity()`."
end
_logdensitymeasure(f, base, ::NoDensity) = DensityMeasure(logfuncdensity(f), base)
basemeasure(μ::DensityMeasure) = μ.base
logdensity_def(μ::DensityMeasure, x) = logdensityof(μ.f, x)
density_def(μ::DensityMeasure, x) = densityof(μ.f, x)
function strict_logdensityof(μ::DensityMeasure, x::Any)
integrand, μ_base = μ.f, μ.base
base_logval = strict_logdensityof(μ_base, x)
T = typeof(base_logval)
U = logdensityof_rt(integrand, x)
R = promote_type(T, U)
# Don't evaluate base measure if integrand is zero or NaN
if isneginf(base_logval)
R(-Inf)
else
integrand_logval = logdensityof(integrand, x)
convert(R, integrand_logval + base_logval)::R
end
end
"""
rebase(μ, ν)
Express `μ` in terms of a density over `ν`. Satisfies
```
basemeasure(rebase(μ, ν)) == ν
density(rebase(μ, ν)) == 𝒹(μ,ν)
```
"""
rebase(μ, ν) = ∫(𝒹(μ, ν), ν)