diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index 07c8810..d5bd127 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.11.2","generation_timestamp":"2025-01-03T20:02:51","documenter_version":"1.8.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.11.3","generation_timestamp":"2025-01-28T01:40:59","documenter_version":"1.8.0"}} \ No newline at end of file diff --git a/dev/api/index.html b/dev/api/index.html index 1d538c8..d09a618 100644 --- a/dev/api/index.html +++ b/dev/api/index.html @@ -1,4 +1,4 @@ API Reference · PlasmaFormulary.jl

API Reference

Dimensionless numbers

PlasmaFormulary.plasma_betaFunction
plasma_beta(T, n, B)

Compute the plamsa beta (β), the ratio of thermal pressure to magnetic pressure.

Arguments

  • T: The temperature of the plasma.
  • n: The particle density of the plasma.
  • B: The magnetic field in the plasma.

Example

julia> plasma_beta(1e6u"K", 1e19u"m^-3", 0.2u"T")
-0.008674873511172188

References

source

Otherwise undocumented functions

This section will be removed once the documentation is complete.

PlasmaFormulary.plasma_frequencyMethod
plasma_frequency(n, [q, mass])

Particle plasma frequency, often this is the cold electrons plasma frequency.

References:

  • https://en.wikipedia.org/wiki/Plasma_oscillation
source
PlasmaFormulary.thermal_pressureMethod
thermal_pressure(T, n)

Calculate the thermal pressure for a Maxwellian distribution.

Arguments

  • T: The particle temperature or energy.
  • n: The particle number density.
source
PlasmaFormulary.thermal_velocity_coefficientsMethod
thermal_velocity_coefficients(method::ThermalVelocityMethod, ndim::Int)

Get the thermal speed coefficient corresponding to the desired thermal speed definition.

Arguments

  • method::ThermalVelocityMethod: Method to be used for calculating the thermal speed. Valid values are MostProbable(), RMS(), MeanMagnitude(), and NRL().
  • ndim::Val{Int}: Dimensionality (1D, 2D, 3D) of space in which to calculate thermal speed. Valid values are Val(1), Val(2), or Val{3}.
source
+0.008674873511172188

References

source

Otherwise undocumented functions

This section will be removed once the documentation is complete.

PlasmaFormulary.plasma_frequencyMethod
plasma_frequency(n, Z, mass_numb)

Ion plasma frequency.

source
PlasmaFormulary.plasma_frequencyMethod
plasma_frequency(n, [q, mass])

Particle plasma frequency, often this is the cold electrons plasma frequency.

References:

  • https://en.wikipedia.org/wiki/Plasma_oscillation
source
PlasmaFormulary.gyroradiusMethod

Calculate the radius of circular motion for a charged particle in a uniform magnetic field

References: PlasmaPy API Documentation

Examples

julia> gyroradius(0.2u"T", Unitful.me, Unitful.q, 1e6u"K")
+0.00015651672339994665 m
source
PlasmaFormulary.inertial_lengthMethod

The inertial length is the characteristic length scale for a particle to be accelerated in a plasma. The Hall effect becomes important on length scales shorter than the ion inertial length.

References: PlasmaPy API Documentation

source
PlasmaFormulary.magnetic_pressureMethod
magnetic_pressure(B)

Calculate the magnetic pressure.

source
PlasmaFormulary.thermal_pressureMethod
thermal_pressure(T, n)

Calculate the thermal pressure for a Maxwellian distribution.

Arguments

  • T: The particle temperature or energy.
  • n: The particle number density.
source
PlasmaFormulary.alfven_velocityMethod

The typical propagation speed of magnetic disturbances in a quasineutral plasma.

References: PlasmaPy API Documentation

source
PlasmaFormulary.thermal_velocity_coefficientsMethod
thermal_velocity_coefficients(method::ThermalVelocityMethod, ndim::Int)

Get the thermal speed coefficient corresponding to the desired thermal speed definition.

Arguments

  • method::ThermalVelocityMethod: Method to be used for calculating the thermal speed. Valid values are MostProbable(), RMS(), MeanMagnitude(), and NRL().
  • ndim::Val{Int}: Dimensionality (1D, 2D, 3D) of space in which to calculate thermal speed. Valid values are Val(1), Val(2), or Val{3}.
source
diff --git a/dev/index.html b/dev/index.html index d284b7e..17c7d23 100644 --- a/dev/index.html +++ b/dev/index.html @@ -1,2 +1,3 @@ -Home · PlasmaFormulary.jl

PlasmaFormulary

A Julia package for plasma physics formulas. This package implements a subset of the formulas found in the NRL Plasma Formulary, as well as some additional formulas taken from the PlasmaPy project.

In the future, the package will support providing particle properties using the ChargedParticles.jl package.

Quick Example

julia> using PlasmaFormulary, Unitful
julia> PlasmaFormulary.debye_length(1e18u"cm^-3", 10u"eV")2.350818870322799e-8 m
  • PlasmaPy : plasmapy.formulary subpackage provides theoretical formulas for calculation of physical quantities helpful for plasma physics.
  • FusionFormulary.jl

Index

+Home · PlasmaFormulary.jl

PlasmaFormulary

A Julia package for plasma physics formulas. This package implements a subset of the formulas found in the NRL Plasma Formulary, as well as some additional formulas taken from the PlasmaPy project.

Features

  • For functions that take a ParticleLike as an argument, we use ChargedParticles.jl package to handle particle properties. One could provide a symbolic particle name or string or a Particle object for the argument. In addition, mass number and charge number can be specified as keyword arguments for these functions.
  • For function whose arguments are Unitful quantities with unique dimensions, arguments are order independent (see PermuteArgs.jl).

Quick Example

julia> using PlasmaFormulary, Unitful
julia> PlasmaFormulary.debye_length(1e18u"cm^-3", 10u"eV")2.350818870322799e-8 m

Installation

using Pkg
+Pkg.add(url="https://github.com/JuliaPlasma/PlasmaFormulary.jl")
  • PlasmaPy : plasmapy.formulary subpackage provides theoretical formulas for calculation of physical quantities helpful for plasma physics.
  • FusionFormulary.jl

Index

diff --git a/dev/objects.inv b/dev/objects.inv index c4fdc1b..b6af6f8 100644 Binary files a/dev/objects.inv and b/dev/objects.inv differ diff --git a/dev/search_index.js b/dev/search_index.js index ae5bb32..6ca9ff7 100644 --- a/dev/search_index.js +++ b/dev/search_index.js @@ -1,3 +1,3 @@ var documenterSearchIndex = {"docs": -[{"location":"api/#API-Reference","page":"API Reference","title":"API Reference","text":"","category":"section"},{"location":"api/#Dimensionless-numbers","page":"API Reference","title":"Dimensionless numbers","text":"","category":"section"},{"location":"api/","page":"API Reference","title":"API Reference","text":"plasma_beta","category":"page"},{"location":"api/#PlasmaFormulary.plasma_beta","page":"API Reference","title":"PlasmaFormulary.plasma_beta","text":"plasma_beta(T, n, B)\n\nCompute the plamsa beta (β), the ratio of thermal pressure to magnetic pressure.\n\nArguments\n\nT: The temperature of the plasma.\nn: The particle density of the plasma.\nB: The magnetic field in the plasma.\n\nExample\n\njulia> plasma_beta(1e6u\"K\", 1e19u\"m^-3\", 0.2u\"T\")\n0.008674873511172188\n\nReferences\n\nPlasmaPy Documentation\nWikipedia\n\n\n\n\n\n","category":"function"},{"location":"api/#Otherwise-undocumented-functions","page":"API Reference","title":"Otherwise undocumented functions","text":"","category":"section"},{"location":"api/","page":"API Reference","title":"API Reference","text":"This section will be removed once the documentation is complete.","category":"page"},{"location":"api/","page":"API Reference","title":"API Reference","text":"Modules = [PlasmaFormulary]\nPages = [\"frequencies.jl\", \"lengths.jl\", \"misc.jl\", \"speeds.jl\"]","category":"page"},{"location":"api/#PlasmaFormulary.plasma_frequency-Tuple{Union{Unitful.Quantity{T, 𝐋^-3, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐋^-3, U}} where {L, S}} where {T, U}, Integer, Any}","page":"API Reference","title":"PlasmaFormulary.plasma_frequency","text":"plasma_frequency(n, Z, mass_numb)\n\nIon plasma frequency.\n\n\n\n\n\n","category":"method"},{"location":"api/#PlasmaFormulary.plasma_frequency-Tuple{Union{Unitful.Quantity{T, 𝐋^-3, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐋^-3, U}} where {L, S}} where {T, U}, Union{Unitful.Quantity{T, 𝐈 𝐓, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐈 𝐓, U}} where {L, S}} where {T, U}, Union{Unitful.Quantity{T, 𝐌, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐌, U}} where {L, S}} where {T, U}}","page":"API Reference","title":"PlasmaFormulary.plasma_frequency","text":"plasma_frequency(n, [q, mass])\n\nParticle plasma frequency, often this is the cold electrons plasma frequency.\n\nReferences:\n\nhttps://en.wikipedia.org/wiki/Plasma_oscillation\n\n\n\n\n\n","category":"method"},{"location":"api/#PlasmaFormulary.gyroradius-Tuple{Union{Unitful.Quantity{T, 𝐌 𝐈^-1 𝐓^-2, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐌 𝐈^-1 𝐓^-2, U}} where {L, S}} where {T, U}, Union{Unitful.Quantity{T, 𝐌, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐌, U}} where {L, S}} where {T, U}, Union{Unitful.Quantity{T, 𝐈 𝐓, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐈 𝐓, U}} where {L, S}} where {T, U}, Union{Unitful.Quantity{T, 𝐋 𝐓^-1, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐋 𝐓^-1, U}} where {L, S}} where {T, U}}","page":"API Reference","title":"PlasmaFormulary.gyroradius","text":"Calculate the radius of circular motion for a charged particle in a uniform magnetic field\n\nReferences: PlasmaPy API Documentation\n\nExamples\n\njulia> gyroradius(0.2u\"T\", Unitful.me, Unitful.q, 1e6u\"K\")\n0.00015651672339994665 m\n\n\n\n\n\n","category":"method"},{"location":"api/#PlasmaFormulary.inertial_length-Tuple{Union{Unitful.Quantity{T, 𝐋^-3, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐋^-3, U}} where {L, S}} where {T, U}, Union{Unitful.Quantity{T, 𝐈 𝐓, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐈 𝐓, U}} where {L, S}} where {T, U}, Union{Unitful.Quantity{T, 𝐌, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐌, U}} where {L, S}} where {T, U}}","page":"API Reference","title":"PlasmaFormulary.inertial_length","text":"The inertial length is the characteristic length scale for a particle to be accelerated in a plasma. The Hall effect becomes important on length scales shorter than the ion inertial length.\n\nReferences: PlasmaPy API Documentation\n\n\n\n\n\n","category":"method"},{"location":"api/#PlasmaFormulary.magnetic_pressure-Tuple{Union{Unitful.Quantity{T, 𝐌 𝐈^-1 𝐓^-2, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐌 𝐈^-1 𝐓^-2, U}} where {L, S}} where {T, U}}","page":"API Reference","title":"PlasmaFormulary.magnetic_pressure","text":"magnetic_pressure(B)\n\nCalculate the magnetic pressure.\n\n\n\n\n\n","category":"method"},{"location":"api/#PlasmaFormulary.thermal_pressure-Tuple{Union{Unitful.Level{L, S, Unitful.Quantity{T, 𝚯, U}} where {T, U, L, S}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐋^2 𝐌 𝐓^-2, U}} where {T, U, L, S}, Unitful.Quantity{T, 𝚯} where T, Unitful.Quantity{T, 𝐋^2 𝐌 𝐓^-2} where T}, Union{Unitful.Quantity{T, 𝐋^-3, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐋^-3, U}} where {L, S}} where {T, U}}","page":"API Reference","title":"PlasmaFormulary.thermal_pressure","text":"thermal_pressure(T, n)\n\nCalculate the thermal pressure for a Maxwellian distribution.\n\nArguments\n\nT: The particle temperature or energy.\nn: The particle number density.\n\n\n\n\n\n","category":"method"},{"location":"api/#PlasmaFormulary.alfven_velocity-Tuple{Union{Unitful.Quantity{T, 𝐌 𝐈^-1 𝐓^-2, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐌 𝐈^-1 𝐓^-2, U}} where {L, S}} where {T, U}, Union{Unitful.Quantity{T, 𝐌 𝐋^-3, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐌 𝐋^-3, U}} where {L, S}} where {T, U}}","page":"API Reference","title":"PlasmaFormulary.alfven_velocity","text":"The typical propagation speed of magnetic disturbances in a quasineutral plasma.\n\nReferences: PlasmaPy API Documentation\n\n\n\n\n\n","category":"method"},{"location":"api/#PlasmaFormulary.thermal_velocity_coefficients-Tuple{PlasmaFormulary.MostProbable, Val{1}}","page":"API Reference","title":"PlasmaFormulary.thermal_velocity_coefficients","text":"thermal_velocity_coefficients(method::ThermalVelocityMethod, ndim::Int)\n\nGet the thermal speed coefficient corresponding to the desired thermal speed definition.\n\nArguments\n\nmethod::ThermalVelocityMethod: Method to be used for calculating the thermal speed. Valid values are MostProbable(), RMS(), MeanMagnitude(), and NRL().\nndim::Val{Int}: Dimensionality (1D, 2D, 3D) of space in which to calculate thermal speed. Valid values are Val(1), Val(2), or Val{3}.\n\n\n\n\n\n","category":"method"},{"location":"","page":"Home","title":"Home","text":"CurrentModule = PlasmaFormulary","category":"page"},{"location":"#PlasmaFormulary","page":"Home","title":"PlasmaFormulary","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"A Julia package for plasma physics formulas. This package implements a subset of the formulas found in the NRL Plasma Formulary, as well as some additional formulas taken from the PlasmaPy project.","category":"page"},{"location":"","page":"Home","title":"Home","text":"In the future, the package will support providing particle properties using the ChargedParticles.jl package.","category":"page"},{"location":"#Quick-Example","page":"Home","title":"Quick Example","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"using PlasmaFormulary, Unitful\n\nPlasmaFormulary.debye_length(1e18u\"cm^-3\", 10u\"eV\")","category":"page"},{"location":"#Related-packages","page":"Home","title":"Related packages","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"PlasmaPy : plasmapy.formulary subpackage provides theoretical formulas for calculation of physical quantities helpful for plasma physics.\nFusionFormulary.jl","category":"page"},{"location":"#Index","page":"Home","title":"Index","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"","category":"page"}] +[{"location":"api/#API-Reference","page":"API Reference","title":"API Reference","text":"","category":"section"},{"location":"api/#Dimensionless-numbers","page":"API Reference","title":"Dimensionless numbers","text":"","category":"section"},{"location":"api/","page":"API Reference","title":"API Reference","text":"plasma_beta","category":"page"},{"location":"api/#PlasmaFormulary.plasma_beta","page":"API Reference","title":"PlasmaFormulary.plasma_beta","text":"plasma_beta(T, n, B)\n\nCompute the plamsa beta (β), the ratio of thermal pressure to magnetic pressure.\n\nArguments\n\nT: The temperature of the plasma.\nn: The particle density of the plasma.\nB: The magnetic field in the plasma.\n\nExample\n\njulia> plasma_beta(1e6u\"K\", 1e19u\"m^-3\", 0.2u\"T\")\n0.008674873511172188\n\nReferences\n\nPlasmaPy Documentation\nWikipedia\n\n\n\n\n\n","category":"function"},{"location":"api/#Otherwise-undocumented-functions","page":"API Reference","title":"Otherwise undocumented functions","text":"","category":"section"},{"location":"api/","page":"API Reference","title":"API Reference","text":"This section will be removed once the documentation is complete.","category":"page"},{"location":"api/","page":"API Reference","title":"API Reference","text":"Modules = [PlasmaFormulary]\nPages = [\"frequencies.jl\", \"lengths.jl\", \"misc.jl\", \"speeds.jl\"]","category":"page"},{"location":"api/#PlasmaFormulary.plasma_frequency-Tuple{Union{Unitful.Quantity{T, 𝐋^-3, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐋^-3, U}} where {L, S}} where {T, U}, Integer, Any}","page":"API Reference","title":"PlasmaFormulary.plasma_frequency","text":"plasma_frequency(n, Z, mass_numb)\n\nIon plasma frequency.\n\n\n\n\n\n","category":"method"},{"location":"api/#PlasmaFormulary.plasma_frequency-Tuple{Union{Unitful.Quantity{T, 𝐋^-3, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐋^-3, U}} where {L, S}} where {T, U}, Union{Unitful.Quantity{T, 𝐈 𝐓, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐈 𝐓, U}} where {L, S}} where {T, U}, Union{Unitful.Quantity{T, 𝐌, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐌, U}} where {L, S}} where {T, U}}","page":"API Reference","title":"PlasmaFormulary.plasma_frequency","text":"plasma_frequency(n, [q, mass])\n\nParticle plasma frequency, often this is the cold electrons plasma frequency.\n\nReferences:\n\nhttps://en.wikipedia.org/wiki/Plasma_oscillation\n\n\n\n\n\n","category":"method"},{"location":"api/#PlasmaFormulary.gyroradius-Tuple{Union{Unitful.Quantity{T, 𝐌 𝐈^-1 𝐓^-2, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐌 𝐈^-1 𝐓^-2, U}} where {L, S}} where {T, U}, Union{Unitful.Quantity{T, 𝐌, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐌, U}} where {L, S}} where {T, U}, Union{Unitful.Quantity{T, 𝐈 𝐓, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐈 𝐓, U}} where {L, S}} where {T, U}, Union{Unitful.Quantity{T, 𝐋 𝐓^-1, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐋 𝐓^-1, U}} where {L, S}} where {T, U}}","page":"API Reference","title":"PlasmaFormulary.gyroradius","text":"Calculate the radius of circular motion for a charged particle in a uniform magnetic field\n\nReferences: PlasmaPy API Documentation\n\nExamples\n\njulia> gyroradius(0.2u\"T\", Unitful.me, Unitful.q, 1e6u\"K\")\n0.00015651672339994665 m\n\n\n\n\n\n","category":"method"},{"location":"api/#PlasmaFormulary.inertial_length-Tuple{Union{Unitful.Quantity{T, 𝐋^-3, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐋^-3, U}} where {L, S}} where {T, U}, Union{Unitful.Quantity{T, 𝐈 𝐓, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐈 𝐓, U}} where {L, S}} where {T, U}, Union{Unitful.Quantity{T, 𝐌, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐌, U}} where {L, S}} where {T, U}}","page":"API Reference","title":"PlasmaFormulary.inertial_length","text":"The inertial length is the characteristic length scale for a particle to be accelerated in a plasma. The Hall effect becomes important on length scales shorter than the ion inertial length.\n\nReferences: PlasmaPy API Documentation\n\n\n\n\n\n","category":"method"},{"location":"api/#PlasmaFormulary.magnetic_pressure-Tuple{Union{Unitful.Quantity{T, 𝐌 𝐈^-1 𝐓^-2, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐌 𝐈^-1 𝐓^-2, U}} where {L, S}} where {T, U}}","page":"API Reference","title":"PlasmaFormulary.magnetic_pressure","text":"magnetic_pressure(B)\n\nCalculate the magnetic pressure.\n\n\n\n\n\n","category":"method"},{"location":"api/#PlasmaFormulary.thermal_pressure-Tuple{Union{Unitful.Level{L, S, Unitful.Quantity{T, 𝚯, U}} where {T, U, L, S}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐋^2 𝐌 𝐓^-2, U}} where {T, U, L, S}, Unitful.Quantity{T, 𝚯} where T, Unitful.Quantity{T, 𝐋^2 𝐌 𝐓^-2} where T}, Union{Unitful.Quantity{T, 𝐋^-3, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐋^-3, U}} where {L, S}} where {T, U}}","page":"API Reference","title":"PlasmaFormulary.thermal_pressure","text":"thermal_pressure(T, n)\n\nCalculate the thermal pressure for a Maxwellian distribution.\n\nArguments\n\nT: The particle temperature or energy.\nn: The particle number density.\n\n\n\n\n\n","category":"method"},{"location":"api/#PlasmaFormulary.alfven_velocity-Tuple{Union{Unitful.Quantity{T, 𝐌 𝐈^-1 𝐓^-2, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐌 𝐈^-1 𝐓^-2, U}} where {L, S}} where {T, U}, Union{Unitful.Quantity{T, 𝐌 𝐋^-3, U}, Unitful.Level{L, S, Unitful.Quantity{T, 𝐌 𝐋^-3, U}} where {L, S}} where {T, U}}","page":"API Reference","title":"PlasmaFormulary.alfven_velocity","text":"The typical propagation speed of magnetic disturbances in a quasineutral plasma.\n\nReferences: PlasmaPy API Documentation\n\n\n\n\n\n","category":"method"},{"location":"api/#PlasmaFormulary.thermal_velocity_coefficients-Tuple{PlasmaFormulary.MostProbable, Val{1}}","page":"API Reference","title":"PlasmaFormulary.thermal_velocity_coefficients","text":"thermal_velocity_coefficients(method::ThermalVelocityMethod, ndim::Int)\n\nGet the thermal speed coefficient corresponding to the desired thermal speed definition.\n\nArguments\n\nmethod::ThermalVelocityMethod: Method to be used for calculating the thermal speed. Valid values are MostProbable(), RMS(), MeanMagnitude(), and NRL().\nndim::Val{Int}: Dimensionality (1D, 2D, 3D) of space in which to calculate thermal speed. Valid values are Val(1), Val(2), or Val{3}.\n\n\n\n\n\n","category":"method"},{"location":"","page":"Home","title":"Home","text":"CurrentModule = PlasmaFormulary","category":"page"},{"location":"#PlasmaFormulary","page":"Home","title":"PlasmaFormulary","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"A Julia package for plasma physics formulas. This package implements a subset of the formulas found in the NRL Plasma Formulary, as well as some additional formulas taken from the PlasmaPy project.","category":"page"},{"location":"#Features","page":"Home","title":"Features","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"For functions that take a ParticleLike as an argument, we use ChargedParticles.jl package to handle particle properties. One could provide a symbolic particle name or string or a Particle object for the argument. In addition, mass number and charge number can be specified as keyword arguments for these functions.\nFor function whose arguments are Unitful quantities with unique dimensions, arguments are order independent (see PermuteArgs.jl).","category":"page"},{"location":"#Quick-Example","page":"Home","title":"Quick Example","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"using PlasmaFormulary, Unitful\n\nPlasmaFormulary.debye_length(1e18u\"cm^-3\", 10u\"eV\")","category":"page"},{"location":"#Installation","page":"Home","title":"Installation","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"using Pkg\nPkg.add(url=\"https://github.com/JuliaPlasma/PlasmaFormulary.jl\")","category":"page"},{"location":"#Related-packages","page":"Home","title":"Related packages","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"PlasmaPy : plasmapy.formulary subpackage provides theoretical formulas for calculation of physical quantities helpful for plasma physics.\nFusionFormulary.jl","category":"page"},{"location":"#Index","page":"Home","title":"Index","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"","category":"page"}] }