forked from data-apis/array-api-compat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_aliases.py
160 lines (139 loc) · 4.94 KB
/
_aliases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from __future__ import annotations
from ..common import _aliases
from .._internal import get_xp
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from typing import Optional, Union
from ._typing import ndarray, Device, Dtype, NestedSequence, SupportsBufferProtocol
import numpy as np
bool = np.bool_
# Basic renames
acos = np.arccos
acosh = np.arccosh
asin = np.arcsin
asinh = np.arcsinh
atan = np.arctan
atan2 = np.arctan2
atanh = np.arctanh
bitwise_left_shift = np.left_shift
bitwise_invert = np.invert
bitwise_right_shift = np.right_shift
concat = np.concatenate
pow = np.power
arange = get_xp(np)(_aliases.arange)
empty = get_xp(np)(_aliases.empty)
empty_like = get_xp(np)(_aliases.empty_like)
eye = get_xp(np)(_aliases.eye)
full = get_xp(np)(_aliases.full)
full_like = get_xp(np)(_aliases.full_like)
linspace = get_xp(np)(_aliases.linspace)
ones = get_xp(np)(_aliases.ones)
ones_like = get_xp(np)(_aliases.ones_like)
zeros = get_xp(np)(_aliases.zeros)
zeros_like = get_xp(np)(_aliases.zeros_like)
UniqueAllResult = get_xp(np)(_aliases.UniqueAllResult)
UniqueCountsResult = get_xp(np)(_aliases.UniqueCountsResult)
UniqueInverseResult = get_xp(np)(_aliases.UniqueInverseResult)
unique_all = get_xp(np)(_aliases.unique_all)
unique_counts = get_xp(np)(_aliases.unique_counts)
unique_inverse = get_xp(np)(_aliases.unique_inverse)
unique_values = get_xp(np)(_aliases.unique_values)
astype = _aliases.astype
std = get_xp(np)(_aliases.std)
var = get_xp(np)(_aliases.var)
permute_dims = get_xp(np)(_aliases.permute_dims)
reshape = get_xp(np)(_aliases.reshape)
argsort = get_xp(np)(_aliases.argsort)
sort = get_xp(np)(_aliases.sort)
nonzero = get_xp(np)(_aliases.nonzero)
sum = get_xp(np)(_aliases.sum)
prod = get_xp(np)(_aliases.prod)
ceil = get_xp(np)(_aliases.ceil)
floor = get_xp(np)(_aliases.floor)
trunc = get_xp(np)(_aliases.trunc)
matmul = get_xp(np)(_aliases.matmul)
matrix_transpose = get_xp(np)(_aliases.matrix_transpose)
tensordot = get_xp(np)(_aliases.tensordot)
def top_k(a, k, /, axis=-1, *, largest=True):
if k <= 0:
raise ValueError(f'k(={k}) provided must be positive.')
positive_axis: int
_arr = np.asanyarray(a)
if axis is None:
arr = _arr.ravel()
positive_axis = 0
else:
arr = _arr
positive_axis = axis if axis > 0 else axis % arr.ndim
slice_start = (np.s_[:],) * positive_axis
if largest:
indices_array = np.argpartition(arr, -k, axis=axis)
slice = slice_start + (np.s_[-k:],)
topk_indices = indices_array[slice]
else:
indices_array = np.argpartition(arr, k-1, axis=axis)
slice = slice_start + (np.s_[:k],)
topk_indices = indices_array[slice]
topk_values = np.take_along_axis(arr, topk_indices, axis=axis)
return (topk_values, topk_indices)
def _supports_buffer_protocol(obj):
try:
memoryview(obj)
except TypeError:
return False
return True
# asarray also adds the copy keyword, which is not present in numpy 1.0.
# asarray() is different enough between numpy, cupy, and dask, the logic
# complicated enough that it's easier to define it separately for each module
# rather than trying to combine everything into one function in common/
def asarray(
obj: Union[
ndarray,
bool,
int,
float,
NestedSequence[bool | int | float],
SupportsBufferProtocol,
],
/,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
copy: "Optional[Union[bool, np._CopyMode]]" = None,
**kwargs,
) -> ndarray:
"""
Array API compatibility wrapper for asarray().
See the corresponding documentation in the array library and/or the array API
specification for more details.
"""
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device for NumPy: {device!r}")
if hasattr(np, '_CopyMode'):
if copy is None:
copy = np._CopyMode.IF_NEEDED
elif copy is False:
copy = np._CopyMode.NEVER
elif copy is True:
copy = np._CopyMode.ALWAYS
else:
# Not present in older NumPys. In this case, we cannot really support
# copy=False.
if copy is False:
raise NotImplementedError("asarray(copy=False) requires a newer version of NumPy.")
return np.array(obj, copy=copy, dtype=dtype, **kwargs)
# These functions are completely new here. If the library already has them
# (i.e., numpy 2.0), use the library version instead of our wrapper.
if hasattr(np, 'vecdot'):
vecdot = np.vecdot
else:
vecdot = get_xp(np)(_aliases.vecdot)
if hasattr(np, 'isdtype'):
isdtype = np.isdtype
else:
isdtype = get_xp(np)(_aliases.isdtype)
__all__ = _aliases.__all__ + ['asarray', 'bool', 'acos',
'acosh', 'asin', 'asinh', 'atan', 'atan2',
'atanh', 'bitwise_left_shift', 'bitwise_invert',
'bitwise_right_shift', 'concat', 'pow', 'top_k']
_all_ignore = ['np', 'get_xp']