-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathimagenet_dali_loader.py
201 lines (156 loc) · 7.47 KB
/
imagenet_dali_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import time
import argparse
import warnings
from datetime import datetime
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import torch.utils.data.distributed
import torchvision.models as models
cudnn.benchmark = True
from models.resnet_imagenet import *
from utils.preprocess import *
from utils.bar_show import *
import warnings
warnings.filterwarnings("ignore")
# Training settings
parser = argparse.ArgumentParser(description='dorefa-net imagenet2012 implementation')
parser.add_argument('--root_dir', type=str, default='./')
parser.add_argument('--data_dir', type=str, default='/imagenet2012_datasets')
parser.add_argument('--log_name', type=str, default='resnet_imagenet_float')
parser.add_argument('--pretrain', action='store_true', default=False)
parser.add_argument('--pretrain_dir', type=str, default='resnet_float')
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--wd', type=float, default=1e-4)
parser.add_argument('--train_batch_size', type=int, default=256)
parser.add_argument('--eval_batch_size', type=int, default=100)
parser.add_argument('--max_epochs', type=int, default=90)
parser.add_argument('--log_interval', type=int, default=40)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--Wbits', type=int, default=8)
parser.add_argument('--Abits', type=int, default=8)
cfg = parser.parse_args()
best_acc = 0 # best test accuracy
start_epoch = 0
TOTAL_TRAIN_PICS = 1271171
TOTAL_EVAL_PICS = 50000
cfg.log_dir = os.path.join(cfg.root_dir, 'logs', cfg.log_name)
cfg.ckpt_dir = os.path.join(cfg.root_dir, 'ckpt', cfg.pretrain_dir)
os.makedirs(cfg.log_dir, exist_ok=True)
os.makedirs(cfg.ckpt_dir, exist_ok=True)
def main():
# nvidia dali dataloader
train_loader = get_imagenet_iter_dali(type='train', image_dir=cfg.data_dir, batch_size=cfg.train_batch_size,
num_threads=16, crop=224, device_id=0, num_gpus=2)
eval_loader = get_imagenet_iter_dali(type='val', image_dir=cfg.data_dir, batch_size=cfg.eval_batch_size,
num_threads=8, crop=224, device_id=0, num_gpus=2)
print('===> Building ResNet..')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = resnet18(wbit=cfg.Wbits, abit=cfg.Abits, pretrained=False)
if device == 'cuda':
model = torch.nn.DataParallel(model)
cudnn.benchmark = True
optimizer = torch.optim.SGD(model.parameters(), lr=cfg.lr, momentum=0.9, weight_decay=cfg.wd)
lr_schedu = optim.lr_scheduler.MultiStepLR(optimizer, [30, 60, 90], gamma=0.1)
criterion = torch.nn.CrossEntropyLoss().cuda()
summary_writer = SummaryWriter(cfg.log_dir)
if cfg.pretrain:
ckpt = torch.load(os.path.join(cfg.ckpt_dir, f'checkpoint.t7'))
model.load_state_dict(ckpt['model_state_dict'])
optimizer.load_state_dict(ckpt['optimizer_state_dict'])
start_epoch = ckpt['epoch']
print('===> Load last checkpoint data')
else:
start_epoch = 0
print('===> Start from scratch')
for epoch in range(start_epoch, cfg.max_epochs):
train(epoch, model, train_loader, criterion, optimizer, summary_writer)
test(epoch, model, eval_loader, criterion, optimizer, summary_writer)
lr_schedu.step(epoch)
summary_writer.close()
def train(epoch, model, train_loader, criterion, optimizer, summary_writer):
print('\nEpoch: %d' % epoch)
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
# switch to train mode
model.train()
end = time.time()
for batch_idx, data in enumerate(train_loader):
#measure data loading time
data_time.update(time.time() - end)
inputs = data[0]["data"].cuda(non_blocking=True)
targets = data[0]["label"].squeeze().long().cuda(non_blocking=True)
#compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
#measure acc and record loss
acc1, acc5 = accuracy(outputs, targets, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(acc1[0], inputs.size(0))
top5.update(acc5[0], inputs.size(0))
#compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
#measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
num_batch_per_epoch = TOTAL_TRAIN_PICS // inputs.size(0) + 1
progress_bar(batch_idx, num_batch_per_epoch, 'Loss: %.3f | Acc1: %.3f%% Acc5: %.3f%% '
% (losses.avg, top1.avg, top5.avg))
if batch_idx % cfg.log_interval == 0: #every log_interval mini_batches...
summary_writer.add_scalar('Loss/train', losses.avg, epoch * num_batch_per_epoch + batch_idx)
summary_writer.add_scalar('Accuracy/train', top1.avg, epoch * num_batch_per_epoch + batch_idx)
summary_writer.add_scalar('learning rate', optimizer.param_groups[0]['lr'], epoch * num_batch_per_epoch + batch_idx)
# for tag, value in model.named_parameters():
# tag = tag.replace('.', '/')
# summary_writer.add_histogram(tag, value.detach(), global_step=epoch * len(train_loader) + batch_idx)
# summary_writer.add_histogram(tag + '/grad', value.grad.detach(), global_step=epoch * len(train_loader) + batch_idx)
def test(epoch, model, eval_loader, criterion, optimizer, summary_writer):
# pass
global best_acc
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for batch_idx, data in enumerate(eval_loader):
inputs = data[0]["data"].cuda(non_blocking=True)
targets = data[0]["label"].squeeze().long().cuda(non_blocking=True)
#compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
#measure acc and record loss
acc1, acc5 = accuracy(outputs, targets, topk=(1,5))
losses.update(loss.item(), inputs.size(0))
top1.update(acc1[0], inputs.size(0))
top5.update(acc5[0], inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
num_batch_per_epoch = TOTAL_EVAL_PICS // inputs.size(0)
progress_bar(batch_idx, num_batch_per_epoch, 'Loss: %.3f | Acc1: %.3f%% Acc5: %.3f%% '
% (losses.avg, top1.avg, top5.avg))
if batch_idx % cfg.log_interval == 0: # every log_interval mini_batches...
summary_writer.add_scalar('Loss/test', losses.avg, epoch * num_batch_per_epoch + batch_idx)
summary_writer.add_scalar('Accuracy/test', top1.avg, epoch * num_batch_per_epoch + batch_idx)
acc = top1.avg
if acc > best_acc:
print('Saving..')
state = {
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'acc': acc,
'epoch': epoch,
}
torch.save(state, os.path.join(cfg.ckpt_dir, f'checkpoint.t7'))
best_acc = acc
if __name__ == '__main__':
main()