-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_skill_discovery_data.py
196 lines (153 loc) · 5.88 KB
/
generate_skill_discovery_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import numpy as np
import pandas as pd
import numpy.random as rng
from collections import defaultdict
import split_dataset
from scipy.stats import qmc
import itertools
import sklearn.datasets
import sys
from sklearn.neighbors import NearestNeighbors
import os
def main():
n_students = 100
n_problems_per_skill = 10
n_features = 50
target_nn_acc = 0.85
std_range = np.linspace(0, 1, 50)
ns_skills = [1, 5, 25, 50]
for n_skills in ns_skills:
print("****** Skills = %d ******" % n_skills)
#
# generate skill parameters
#
probs = generate_skill_params(n_skills)
#
# generate answers
#
skc = generate_seqs(n_students, n_problems_per_skill, probs)
#
# generate problem->skill assignments
#
X, A = generate_clusters(n_skills,
n_problems_per_skill,
n_features,
target_nn_acc,
std_range)
np.save("data/datasets/sd_%d.embeddings.npy" % n_skills, X)
#
# generate dataframes
#
df_blocked = generate_df(skc, A, 'blocked')
df_blocked.to_csv("data/datasets/sd_%d_blocked.csv" % (n_skills), index=False)
df_interleaved = generate_df(skc, A, 'interleaved')
df_interleaved.to_csv("data/datasets/sd_%d_interleaved.csv" % (n_skills), index=False)
splits = split_dataset.main(df_blocked, 5, 5)
#
# both scheduled variants use the same split
#
np.save("data/splits/sd_%d_blocked.npy" % n_skills, splits)
np.save("data/splits/sd_%d_interleaved.npy" % n_skills, splits)
def generate_skill_params(n_skills):
# possible parameter values
pIs = [0.1, 0.25, 0.5, 0.75, 0.9]
pLs = [0.01, 0.05, 0.1, 0.2]
pFs = [0.01, 0.05, 0.1, 0.2]
pGs = [0.1, 0.2, 0.3, 0.4]
pSs = [0.1, 0.2, 0.3, 0.4]
all_prob_combs = np.array(list(itertools.product(pIs, pLs, pFs, pGs, pSs)))
print("Choosing from %d combinations with replacement" % all_prob_combs.shape[0])
probs = all_prob_combs[rng.choice(all_prob_combs.shape[0], replace=True, size=n_skills), :]
# n_skills x 5
return probs
def generate_clusters(n_clusters,
n_samples_per_cluster,
n_features,
target_nn_acc,
sorted_cluster_stds,
reps=100):
"""
Generates clusters that are caliberated such that a nearest neighbor classifier would have a given accuracy
"""
min_diff = np.inf
best_std = 0
last_diff = 0
for cluster_std in sorted_cluster_stds:
means = np.zeros(reps)
for r in range(reps):
X, y = sklearn.datasets.make_blobs(n_samples=n_clusters*n_samples_per_cluster,
centers=n_clusters,
n_features=n_features,
cluster_std=cluster_std,
center_box=(-1, 1))
nbrs = NearestNeighbors(n_neighbors=2, algorithm='ball_tree').fit(X)
distances, indices = nbrs.kneighbors(X)
point_label = y[indices[:,0]]
label_of_nn = y[indices[:,1]]
means[r] = np.mean(point_label == label_of_nn)
acc_diff = np.mean(np.abs(target_nn_acc - np.mean(means)))
print("%0.2f %0.2f %0.2f" % (cluster_std, np.mean(means), acc_diff))
if acc_diff < min_diff:
min_diff = acc_diff
best_std = cluster_std
elif acc_diff - last_diff > 0.02:
pass
#break # diff is starting to increase
last_diff = acc_diff
print("Best Std: %0.2f (diff: %0.2f)" % (best_std, min_diff))
X, y = sklearn.datasets.make_blobs(n_samples=n_clusters*n_samples_per_cluster,
centers=n_clusters,
n_features=n_features,
cluster_std=best_std,
center_box=(-1, 1))
return X, y
def generate_seqs(n_students, n_problems_per_skill, probs):
n_kcs = probs.shape[0]
skc = np.zeros((n_students, n_kcs, n_problems_per_skill))
for s in range(n_students):
state = rng.binomial(1, probs[:,0])
pL = probs[:,1]
pF = probs[:,2]
pG = probs[:,3]
pS = probs[:,4]
for t in range(n_problems_per_skill):
pC = (1 - pS) * state + (1-state) * pG
ans = rng.binomial(1, pC)
state = rng.binomial(1, (1 - pF) * state + (1-state) * pL)
skc[s, :, t] = ans
return skc
def generate_df(skc, A, kcseq):
n_kcs = skc.shape[1]
n_problems_per_skill = skc.shape[2]
cols = defaultdict(list)
for s in range(skc.shape[0]):
#
# create random problem sequence for each KC
#
problem_seqs = []
for kc in range(n_kcs):
kc_problems = np.where(A == kc)[0]
np.random.shuffle(kc_problems)
problem_seqs.append(kc_problems)
problem_seqs = np.array(problem_seqs)
#
# flatten trial sequence, either blocked or interleaved
#
order = 'C' if kcseq == 'blocked' else 'F'
ans_seq = skc[s, :, :].flatten(order)
problem_seq = problem_seqs.flatten(order)
skill_seq = np.tile(np.arange(n_kcs), (n_problems_per_skill,1)).T.flatten(order)
#
# generate df
#
for i in range(ans_seq.shape[0]):
cols["student"].append(s)
cols["correct"].append(ans_seq[i])
cols["skill"].append(skill_seq[i])
cols["problem"].append(problem_seq[i])
print(skill_seq)
df = pd.DataFrame(cols)
df['correct'] = df['correct'].astype(int)
return df
if __name__ == "__main__":
main()