-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss_sequence.py
93 lines (74 loc) · 2.67 KB
/
loss_sequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import numpy as np
import itertools
import torch as th
import torch.nn.functional as F
from torch import Tensor
from typing import List, Tuple
import torch.nn as nn
from numba import jit
def main():
# membership logits
membership_logits = th.tensor([
[3, -3, -3], # 0
[3, -3, -4], # 1
[-3, 4, -2], # 2
[-3, 5, -2], # 3
[-10, 0, 10], # 4
[10, 0, 0] # 5
]).float()
# sequence
problem_seq = th.tensor([
[0, 1, 2, 0, 1, 2, 3]
])
# only first 4 trials
mask_ix = th.tensor([[1, 1, 1, 1, 1, 0, 0]]).float()
membership_logprobs = F.log_softmax(membership_logits, 1)
r = mean_logprob_same_at_lag(problem_seq, mask_ix, membership_logprobs, 2)
print(r)
r = nback_loss(problem_seq, mask_ix, membership_logprobs, [1, 2, 3, 4, 5])
print(r)
@th.jit.script
def mean_logprob_same_at_lag(problem_seq: Tensor, mask_ix: Tensor, membership_logprobs: Tensor, lag: int):
"""
Input:
problem_seq: BxT
mask_ix: BxT
membership_logprobs: PxK
lag: int
Output:
mean_logprob_same: B
Average log P(a_i == a_i-lag)
"""
# if lag is bigger than input size, return max loss
if lag >= problem_seq.shape[1]:
return th.ones(problem_seq.shape[0]) * -100.0
#
# probability that n-lag problems are the same
#
prev_problem = problem_seq[:, :-lag] # BxT-L
curr_problem = problem_seq[:, lag:] # BxT-L
prev_logprobs = membership_logprobs[prev_problem] # BxT-LxK
curr_logprobs = membership_logprobs[curr_problem] # BxT-LxK
u = prev_logprobs + curr_logprobs # BxT-LxK
logprob_same = th.logsumexp(u, dim=2) # BxT-L
# compute average logprob on valid trials, B
mean_logprob_same = (logprob_same * mask_ix[:, lag:]).sum(1) / (mask_ix[:, lag:].sum(1) + 1e-6)
# sequence length has to be twice the lag at minimum
# so that we get one cycle at least
seq_lens = mask_ix.sum(1) # B
less_than_lag_ix = seq_lens < (2*lag)
mean_logprob_same[less_than_lag_ix] = -100
return mean_logprob_same
@th.jit.script
def nback_loss(problem_seq: Tensor, mask_ix: Tensor, membership_logprobs: Tensor, lags: List[int]):
outputs = th.jit.annotate(List[Tensor], [])
for lag in lags:
# B
mean_logprob_same = mean_logprob_same_at_lag(problem_seq, mask_ix, membership_logprobs, lag)
outputs.append(mean_logprob_same)
outputs = th.stack(outputs) # lags x B
outputs = outputs.T # Bxlags
mfl, _ = th.min(-outputs, 1)
return mfl.mean()
if __name__ == "__main__":
main()