-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpart_dataset.py
186 lines (161 loc) · 7.3 KB
/
part_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
'''
Dataset for shapenet part segmentaion.
'''
import os
import os.path
import json
import numpy as np
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
def pc_normalize(pc):
""" pc: NxC, return NxC """
l = pc.shape[0]
centroid = np.mean(pc, axis=0)
pc = pc - centroid
m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
pc = pc / m
return pc
def rotate_point_cloud(batch_data):
""" Randomly rotate the point clouds to augument the dataset
rotation is per shape based along up direction
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds
"""
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in xrange(batch_data.shape[0]):
rotation_angle = np.random.uniform() * 2 * np.pi
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, 0, sinval],
[0, 1, 0],
[-sinval, 0, cosval]])
shape_pc = batch_data[k, ...]
rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
return rotated_data
def add_noise_coordinates(batch_data, std=0.01):
noise = np.random.normal(loc=0.0, scale=std, size=batch_data.shape)
return batch_data + noise
def add_noise_nullify_random(batch_data, rat=0.1):
indices = np.random.choice(np.arange(batch_data.shape[1]), replace=False,
size=int(batch_data.shape[1] * rat))
noised_batch = np.copy(batch_data)
noised_batch[:, indices] = 0
return noised_batch
def add_noise_nullify_sector(batch_data, rat=0.1):
noised_batch = np.copy(batch_data)
sector_centers = np.random.uniform(-1., 1, (batch_data.shape[0], 1, 3))
diffs = noised_batch - np.repeat(sector_centers, batch_data.shape[1], axis=1)
dists = np.linalg.norm(diffs, axis=2)
quantiles = np.quantile(dists, rat, axis=1)
quantiles = np.repeat(quantiles[:, np.newaxis], 2048, axis=1)
noised_batch[np.where(dists < quantiles)] = 0
return noised_batch
def add_noise_everywhere(batch_data, rat=0.1):
noised_batch = np.copy(batch_data)
indices = np.random.choice(np.arange(noised_batch.shape[1]), replace=False,
size=int(noised_batch.shape[1] * rat))
noised_batch[:, indices] = np.random.uniform(-1., 1., size=(noised_batch.shape[0], indices.size, 3))
return noised_batch
def add_noise(batch_data, rat=0.1, proportion=(1./3, 1./3, 1./3)):
noise_type = np.random.choice(3, p=proportion)
if noise_type == 0:
return add_noise_nullify_random(batch_data, rat)
elif noise_type == 1:
return add_noise_nullify_sector(batch_data, rat)
elif noise_type == 2:
return add_noise_everywhere(batch_data, rat)
class PartDataset():
def __init__(self, root, npoints = 2500, classification = False, class_choice = None, split='train', normalize=True):
self.npoints = npoints
self.root = root
self.catfile = os.path.join(self.root, 'synsetoffset2category.txt')
self.cat = {}
self.classification = classification
self.normalize = normalize
with open(self.catfile, 'r') as f:
for line in f:
ls = line.strip().split()
self.cat[ls[0]] = ls[1]
if class_choice is not None:
self.cat = {k:v for k,v in self.cat.items() if k in class_choice}
self.meta = {}
with open(os.path.join(self.root, 'train_test_split', 'shuffled_train_file_list.json'), 'r') as f:
train_ids = set([str(d.split('/')[2]) for d in json.load(f)])
with open(os.path.join(self.root, 'train_test_split', 'shuffled_val_file_list.json'), 'r') as f:
val_ids = set([str(d.split('/')[2]) for d in json.load(f)])
with open(os.path.join(self.root, 'train_test_split', 'shuffled_test_file_list.json'), 'r') as f:
test_ids = set([str(d.split('/')[2]) for d in json.load(f)])
for item in self.cat:
self.meta[item] = []
dir_point = os.path.join(self.root, self.cat[item], 'points')
dir_seg = os.path.join(self.root, self.cat[item], 'points_label')
fns = sorted(os.listdir(dir_point))
if split=='trainval':
fns = [fn for fn in fns if ((fn[0:-4] in train_ids) or (fn[0:-4] in val_ids))]
elif split=='train':
fns = [fn for fn in fns if fn[0:-4] in train_ids]
elif split=='val':
fns = [fn for fn in fns if fn[0:-4] in val_ids]
elif split=='test':
fns = [fn for fn in fns if fn[0:-4] in test_ids]
else:
print('Unknown split: %s. Exiting..'%(split))
exit(-1)
for fn in fns:
token = (os.path.splitext(os.path.basename(fn))[0])
self.meta[item].append((os.path.join(dir_point, token + '.pts'), os.path.join(dir_seg, token + '.seg')))
self.datapath = []
for item in self.cat:
for fn in self.meta[item]:
self.datapath.append((item, fn[0], fn[1]))
self.classes = dict(zip(self.cat, range(len(self.cat))))
self.num_seg_classes = 0
if not self.classification:
for i in range(len(self.datapath)/50):
l = len(np.unique(np.loadtxt(self.datapath[i][-1]).astype(np.uint8)))
if l > self.num_seg_classes:
self.num_seg_classes = l
self.cache = {} # from index to (point_set, cls, seg) tuple
self.cache_size = 18000
def __getitem__(self, index):
if index in self.cache:
point_set, seg, cls = self.cache[index]
else:
fn = self.datapath[index]
cls = self.classes[self.datapath[index][0]]
cls = np.array([cls]).astype(np.int32)
point_set = np.loadtxt(fn[1]).astype(np.float32)
if self.normalize:
point_set = pc_normalize(point_set)
seg = np.loadtxt(fn[2]).astype(np.int64) - 1
if len(self.cache) < self.cache_size:
self.cache[index] = (point_set, seg, cls)
choice = np.random.choice(len(seg), self.npoints, replace=True)
#resample
point_set = point_set[choice, :]
seg = seg[choice]
if self.classification:
return point_set, cls
else:
return point_set, seg
def __len__(self):
return len(self.datapath)
if __name__ == '__main__':
d = PartDataset(root = os.path.join(BASE_DIR, 'data/shapenetcore_partanno_segmentation_benchmark_v0'), class_choice = ['Chair'], split='trainval')
print(len(d))
import time
tic = time.time()
i = 100
ps, seg = d[i]
print np.max(seg), np.min(seg)
print(time.time() - tic)
print(ps.shape, type(ps), seg.shape,type(seg))
sys.path.append('utils')
import show3d_balls
show3d_balls.showpoints(ps, ballradius=8)
d = PartDataset(root = os.path.join(BASE_DIR, 'data/shapenetcore_partanno_segmentation_benchmark_v0'), classification = True)
print(len(d))
ps, cls = d[0]
print(ps.shape, type(ps), cls.shape,type(cls))