-
Notifications
You must be signed in to change notification settings - Fork 248
/
Copy path87f81569-fa04-4eb3-8b75-42c116e96ba0.txt
2165 lines (2092 loc) · 134 KB
/
87f81569-fa04-4eb3-8b75-42c116e96ba0.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 03:47:41 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 38C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 30C P0 115W / 700W | 39MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 118W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 118W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 39C P0 123W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 29C P0 110W / 700W | 31MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 39C P0 127W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 118W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:32022ms step_avg:nanms
step:2/1530 train_loss:10.0728 train_time:32132ms step_avg:nanms
step:3/1530 train_loss:8.3527 train_time:32292ms step_avg:nanms
step:4/1530 train_loss:7.6338 train_time:32452ms step_avg:nanms
step:5/1530 train_loss:7.4748 train_time:32612ms step_avg:nanms
step:6/1530 train_loss:6.9979 train_time:32773ms step_avg:nanms
step:7/1530 train_loss:7.2115 train_time:32932ms step_avg:nanms
step:8/1530 train_loss:6.7433 train_time:33093ms step_avg:nanms
step:9/1530 train_loss:6.6279 train_time:33253ms step_avg:nanms
step:10/1530 train_loss:6.5128 train_time:33413ms step_avg:nanms
step:11/1530 train_loss:6.5380 train_time:115ms step_avg:nanms
step:12/1530 train_loss:6.3720 train_time:275ms step_avg:nanms
step:13/1530 train_loss:6.2652 train_time:436ms step_avg:145.34ms
step:14/1530 train_loss:6.2111 train_time:596ms step_avg:149.02ms
step:15/1530 train_loss:6.2047 train_time:757ms step_avg:151.31ms
step:16/1530 train_loss:6.1035 train_time:917ms step_avg:152.85ms
step:17/1530 train_loss:6.1789 train_time:1077ms step_avg:153.79ms
step:18/1530 train_loss:5.9711 train_time:1237ms step_avg:154.67ms
step:19/1530 train_loss:6.0283 train_time:1397ms step_avg:155.24ms
step:20/1530 train_loss:5.6745 train_time:1559ms step_avg:155.89ms
step:21/1530 train_loss:5.9632 train_time:1719ms step_avg:156.28ms
step:22/1530 train_loss:6.1931 train_time:1880ms step_avg:156.64ms
step:23/1530 train_loss:5.8590 train_time:2040ms step_avg:156.91ms
step:24/1530 train_loss:6.0249 train_time:2199ms step_avg:157.08ms
step:25/1530 train_loss:5.7102 train_time:2359ms step_avg:157.30ms
step:26/1530 train_loss:5.6056 train_time:2520ms step_avg:157.50ms
step:27/1530 train_loss:5.7866 train_time:2680ms step_avg:157.65ms
step:28/1530 train_loss:5.4111 train_time:2841ms step_avg:157.81ms
step:29/1530 train_loss:5.6952 train_time:3001ms step_avg:157.92ms
step:30/1530 train_loss:5.4737 train_time:3161ms step_avg:158.04ms
step:31/1530 train_loss:5.4483 train_time:3322ms step_avg:158.19ms
step:32/1530 train_loss:5.2888 train_time:3482ms step_avg:158.29ms
step:33/1530 train_loss:5.5913 train_time:3643ms step_avg:158.40ms
step:34/1530 train_loss:5.4948 train_time:3803ms step_avg:158.46ms
step:35/1530 train_loss:5.6256 train_time:3964ms step_avg:158.55ms
step:36/1530 train_loss:5.5770 train_time:4124ms step_avg:158.62ms
step:37/1530 train_loss:5.4680 train_time:4284ms step_avg:158.68ms
step:38/1530 train_loss:5.3214 train_time:4445ms step_avg:158.75ms
step:39/1530 train_loss:5.3480 train_time:4605ms step_avg:158.81ms
step:40/1530 train_loss:5.2576 train_time:4765ms step_avg:158.84ms
step:41/1530 train_loss:5.2347 train_time:4925ms step_avg:158.87ms
step:42/1530 train_loss:5.1683 train_time:5085ms step_avg:158.91ms
step:43/1530 train_loss:5.2698 train_time:5246ms step_avg:158.98ms
step:44/1530 train_loss:5.2281 train_time:5406ms step_avg:159.01ms
step:45/1530 train_loss:5.3835 train_time:5566ms step_avg:159.03ms
step:46/1530 train_loss:5.1863 train_time:5726ms step_avg:159.06ms
step:47/1530 train_loss:5.0948 train_time:5887ms step_avg:159.10ms
step:48/1530 train_loss:5.2205 train_time:6046ms step_avg:159.11ms
step:49/1530 train_loss:5.1534 train_time:6207ms step_avg:159.15ms
step:50/1530 train_loss:5.2549 train_time:6367ms step_avg:159.16ms
step:51/1530 train_loss:5.1427 train_time:6527ms step_avg:159.20ms
step:52/1530 train_loss:5.0319 train_time:6688ms step_avg:159.24ms
step:53/1530 train_loss:5.1699 train_time:6848ms step_avg:159.26ms
step:54/1530 train_loss:5.0024 train_time:7008ms step_avg:159.27ms
step:55/1530 train_loss:5.4088 train_time:7167ms step_avg:159.27ms
step:56/1530 train_loss:5.0271 train_time:7328ms step_avg:159.31ms
step:57/1530 train_loss:4.8828 train_time:7489ms step_avg:159.35ms
step:58/1530 train_loss:5.0563 train_time:7649ms step_avg:159.35ms
step:59/1530 train_loss:5.0480 train_time:7811ms step_avg:159.40ms
step:60/1530 train_loss:5.1395 train_time:7971ms step_avg:159.42ms
step:61/1530 train_loss:4.8455 train_time:8133ms step_avg:159.47ms
step:62/1530 train_loss:4.9769 train_time:8293ms step_avg:159.48ms
step:63/1530 train_loss:4.9719 train_time:8453ms step_avg:159.50ms
step:64/1530 train_loss:4.9816 train_time:8613ms step_avg:159.50ms
step:65/1530 train_loss:4.7940 train_time:8773ms step_avg:159.52ms
step:66/1530 train_loss:4.9577 train_time:8934ms step_avg:159.53ms
step:67/1530 train_loss:4.8526 train_time:9093ms step_avg:159.53ms
step:68/1530 train_loss:5.1118 train_time:9255ms step_avg:159.56ms
step:69/1530 train_loss:4.7171 train_time:9417ms step_avg:159.60ms
step:70/1530 train_loss:4.8769 train_time:9576ms step_avg:159.61ms
step:71/1530 train_loss:4.9751 train_time:9737ms step_avg:159.62ms
step:72/1530 train_loss:4.8915 train_time:9897ms step_avg:159.62ms
step:73/1530 train_loss:4.7618 train_time:10058ms step_avg:159.64ms
step:74/1530 train_loss:4.9147 train_time:10218ms step_avg:159.66ms
step:75/1530 train_loss:4.8683 train_time:10378ms step_avg:159.67ms
step:76/1530 train_loss:4.8057 train_time:10539ms step_avg:159.68ms
step:77/1530 train_loss:4.9119 train_time:10699ms step_avg:159.68ms
step:78/1530 train_loss:5.1266 train_time:10859ms step_avg:159.69ms
step:79/1530 train_loss:4.8122 train_time:11019ms step_avg:159.70ms
step:80/1530 train_loss:4.8614 train_time:11179ms step_avg:159.70ms
step:81/1530 train_loss:4.6485 train_time:11339ms step_avg:159.71ms
step:82/1530 train_loss:4.8104 train_time:11499ms step_avg:159.71ms
step:83/1530 train_loss:4.7844 train_time:11660ms step_avg:159.72ms
step:84/1530 train_loss:4.7973 train_time:11820ms step_avg:159.73ms
step:85/1530 train_loss:4.6264 train_time:11981ms step_avg:159.74ms
step:86/1530 train_loss:4.8276 train_time:12141ms step_avg:159.75ms
step:87/1530 train_loss:4.7483 train_time:12304ms step_avg:159.79ms
step:88/1530 train_loss:4.7446 train_time:12463ms step_avg:159.78ms
step:89/1530 train_loss:4.7109 train_time:12623ms step_avg:159.79ms
step:90/1530 train_loss:4.6607 train_time:12785ms step_avg:159.81ms
step:91/1530 train_loss:4.6409 train_time:12946ms step_avg:159.83ms
step:92/1530 train_loss:4.7868 train_time:13107ms step_avg:159.84ms
step:93/1530 train_loss:4.6097 train_time:13266ms step_avg:159.83ms
step:94/1530 train_loss:4.6419 train_time:13428ms step_avg:159.85ms
step:95/1530 train_loss:4.6790 train_time:13588ms step_avg:159.86ms
step:96/1530 train_loss:4.5881 train_time:13750ms step_avg:159.88ms
step:97/1530 train_loss:4.6337 train_time:13910ms step_avg:159.89ms
step:98/1530 train_loss:4.5786 train_time:14071ms step_avg:159.90ms
step:99/1530 train_loss:4.6509 train_time:14232ms step_avg:159.91ms
step:100/1530 train_loss:4.6677 train_time:14393ms step_avg:159.92ms
step:101/1530 train_loss:4.5232 train_time:14554ms step_avg:159.93ms
step:102/1530 train_loss:4.7072 train_time:14715ms step_avg:159.94ms
step:103/1530 train_loss:4.5769 train_time:14875ms step_avg:159.95ms
step:104/1530 train_loss:4.5427 train_time:15036ms step_avg:159.95ms
step:105/1530 train_loss:4.5332 train_time:15195ms step_avg:159.95ms
step:106/1530 train_loss:4.6164 train_time:15356ms step_avg:159.96ms
step:107/1530 train_loss:4.4982 train_time:15517ms step_avg:159.97ms
step:108/1530 train_loss:4.3659 train_time:15677ms step_avg:159.97ms
step:109/1530 train_loss:4.4771 train_time:15839ms step_avg:159.99ms
step:110/1530 train_loss:4.4824 train_time:15998ms step_avg:159.98ms
step:111/1530 train_loss:4.4130 train_time:16159ms step_avg:159.99ms
step:112/1530 train_loss:4.5823 train_time:16320ms step_avg:160.00ms
step:113/1530 train_loss:4.4928 train_time:16480ms step_avg:160.00ms
step:114/1530 train_loss:4.3550 train_time:16641ms step_avg:160.01ms
step:115/1530 train_loss:4.5070 train_time:16804ms step_avg:160.04ms
step:116/1530 train_loss:4.4745 train_time:16969ms step_avg:160.09ms
step:117/1530 train_loss:4.3611 train_time:17133ms step_avg:160.12ms
step:118/1530 train_loss:4.5946 train_time:17297ms step_avg:160.16ms
step:119/1530 train_loss:4.4596 train_time:17460ms step_avg:160.19ms
step:120/1530 train_loss:4.3127 train_time:17624ms step_avg:160.22ms
step:121/1530 train_loss:4.2930 train_time:17788ms step_avg:160.26ms
step:122/1530 train_loss:4.4509 train_time:17951ms step_avg:160.28ms
step:123/1530 train_loss:4.2857 train_time:18115ms step_avg:160.31ms
step:124/1530 train_loss:4.5761 train_time:18279ms step_avg:160.34ms
step:125/1530 train_loss:4.4404 train_time:18443ms step_avg:160.37ms
step:125/1530 val_loss:4.3942 train_time:18490ms step_avg:160.78ms
step:126/1530 train_loss:4.4037 train_time:18609ms step_avg:160.42ms
step:127/1530 train_loss:4.4239 train_time:18776ms step_avg:160.48ms
step:128/1530 train_loss:4.3812 train_time:18940ms step_avg:160.51ms
step:129/1530 train_loss:4.6951 train_time:19104ms step_avg:160.54ms
step:130/1530 train_loss:4.3582 train_time:19268ms step_avg:160.57ms
step:131/1530 train_loss:4.3866 train_time:19432ms step_avg:160.60ms
step:132/1530 train_loss:4.3443 train_time:19598ms step_avg:160.64ms
step:133/1530 train_loss:4.4419 train_time:19762ms step_avg:160.67ms
step:134/1530 train_loss:4.2517 train_time:19926ms step_avg:160.69ms
step:135/1530 train_loss:4.4382 train_time:20090ms step_avg:160.72ms
step:136/1530 train_loss:4.2132 train_time:20256ms step_avg:160.76ms
step:137/1530 train_loss:4.3741 train_time:20422ms step_avg:160.80ms
step:138/1530 train_loss:4.2803 train_time:20587ms step_avg:160.84ms
step:139/1530 train_loss:4.3740 train_time:20751ms step_avg:160.86ms
step:140/1530 train_loss:4.4765 train_time:20914ms step_avg:160.88ms
step:141/1530 train_loss:4.3036 train_time:21079ms step_avg:160.91ms
step:142/1530 train_loss:4.2921 train_time:21243ms step_avg:160.93ms
step:143/1530 train_loss:4.2493 train_time:21407ms step_avg:160.95ms
step:144/1530 train_loss:4.3420 train_time:21571ms step_avg:160.98ms
step:145/1530 train_loss:4.3012 train_time:21736ms step_avg:161.01ms
step:146/1530 train_loss:4.1721 train_time:21899ms step_avg:161.03ms
step:147/1530 train_loss:4.3230 train_time:22063ms step_avg:161.04ms
step:148/1530 train_loss:4.3570 train_time:22227ms step_avg:161.06ms
step:149/1530 train_loss:4.2958 train_time:22390ms step_avg:161.08ms
step:150/1530 train_loss:4.4287 train_time:22555ms step_avg:161.11ms
step:151/1530 train_loss:4.2614 train_time:22721ms step_avg:161.14ms
step:152/1530 train_loss:4.2807 train_time:22885ms step_avg:161.16ms
step:153/1530 train_loss:4.3507 train_time:23049ms step_avg:161.19ms
step:154/1530 train_loss:4.3593 train_time:23213ms step_avg:161.20ms
step:155/1530 train_loss:4.2732 train_time:23379ms step_avg:161.23ms
step:156/1530 train_loss:4.3444 train_time:23542ms step_avg:161.24ms
step:157/1530 train_loss:4.3929 train_time:23706ms step_avg:161.27ms
step:158/1530 train_loss:4.2313 train_time:23869ms step_avg:161.28ms
step:159/1530 train_loss:4.3102 train_time:24035ms step_avg:161.31ms
step:160/1530 train_loss:4.1309 train_time:24199ms step_avg:161.32ms
step:161/1530 train_loss:4.3626 train_time:24362ms step_avg:161.34ms
step:162/1530 train_loss:4.3567 train_time:24526ms step_avg:161.35ms
step:163/1530 train_loss:4.3416 train_time:24689ms step_avg:161.37ms
step:164/1530 train_loss:4.1799 train_time:24853ms step_avg:161.39ms
step:165/1530 train_loss:4.2770 train_time:25018ms step_avg:161.41ms
step:166/1530 train_loss:4.3324 train_time:25181ms step_avg:161.42ms
step:167/1530 train_loss:4.1910 train_time:25345ms step_avg:161.43ms
step:168/1530 train_loss:4.2847 train_time:25509ms step_avg:161.45ms
step:169/1530 train_loss:4.1631 train_time:25671ms step_avg:161.45ms
step:170/1530 train_loss:4.0204 train_time:25837ms step_avg:161.48ms
step:171/1530 train_loss:4.1919 train_time:26001ms step_avg:161.49ms
step:172/1530 train_loss:4.2073 train_time:26163ms step_avg:161.50ms
step:173/1530 train_loss:4.2625 train_time:26325ms step_avg:161.51ms
step:174/1530 train_loss:4.4170 train_time:26488ms step_avg:161.51ms
step:175/1530 train_loss:4.2257 train_time:26650ms step_avg:161.51ms
step:176/1530 train_loss:4.0895 train_time:26814ms step_avg:161.53ms
step:177/1530 train_loss:4.0581 train_time:26977ms step_avg:161.54ms
step:178/1530 train_loss:4.1753 train_time:27140ms step_avg:161.55ms
step:179/1530 train_loss:4.1157 train_time:27303ms step_avg:161.56ms
step:180/1530 train_loss:4.1264 train_time:27465ms step_avg:161.56ms
step:181/1530 train_loss:4.2953 train_time:27628ms step_avg:161.57ms
step:182/1530 train_loss:4.1575 train_time:27791ms step_avg:161.57ms
step:183/1530 train_loss:4.1194 train_time:27955ms step_avg:161.59ms
step:184/1530 train_loss:4.1171 train_time:28119ms step_avg:161.61ms
step:185/1530 train_loss:4.1947 train_time:28282ms step_avg:161.61ms
step:186/1530 train_loss:4.1622 train_time:28445ms step_avg:161.62ms
step:187/1530 train_loss:4.2225 train_time:28608ms step_avg:161.63ms
step:188/1530 train_loss:4.1588 train_time:28906ms step_avg:162.40ms
step:189/1530 train_loss:4.1018 train_time:29246ms step_avg:163.38ms
step:190/1530 train_loss:4.1960 train_time:29408ms step_avg:163.38ms
step:191/1530 train_loss:4.0727 train_time:29571ms step_avg:163.38ms
step:192/1530 train_loss:4.0205 train_time:29734ms step_avg:163.37ms
step:193/1530 train_loss:4.2389 train_time:29898ms step_avg:163.38ms
step:194/1530 train_loss:4.1679 train_time:30061ms step_avg:163.38ms
step:195/1530 train_loss:4.3498 train_time:30224ms step_avg:163.38ms
step:196/1530 train_loss:4.1658 train_time:30386ms step_avg:163.37ms
step:197/1530 train_loss:4.0431 train_time:30550ms step_avg:163.37ms
step:198/1530 train_loss:4.1821 train_time:30712ms step_avg:163.36ms
step:199/1530 train_loss:4.0316 train_time:30876ms step_avg:163.36ms
step:200/1530 train_loss:4.1105 train_time:31040ms step_avg:163.37ms
step:201/1530 train_loss:4.0198 train_time:31204ms step_avg:163.37ms
step:202/1530 train_loss:4.2556 train_time:31366ms step_avg:163.36ms
step:203/1530 train_loss:4.0626 train_time:31528ms step_avg:163.36ms
step:204/1530 train_loss:4.1893 train_time:31691ms step_avg:163.35ms
step:205/1530 train_loss:4.2405 train_time:31855ms step_avg:163.36ms
step:206/1530 train_loss:3.9402 train_time:32019ms step_avg:163.36ms
step:207/1530 train_loss:4.0737 train_time:32182ms step_avg:163.36ms
step:208/1530 train_loss:4.0952 train_time:32344ms step_avg:163.36ms
step:209/1530 train_loss:4.2284 train_time:32506ms step_avg:163.35ms
step:210/1530 train_loss:4.1667 train_time:32669ms step_avg:163.34ms
step:211/1530 train_loss:4.0418 train_time:32833ms step_avg:163.35ms
step:212/1530 train_loss:4.1010 train_time:32997ms step_avg:163.35ms
step:213/1530 train_loss:4.0362 train_time:33160ms step_avg:163.35ms
step:214/1530 train_loss:4.1126 train_time:33323ms step_avg:163.35ms
step:215/1530 train_loss:3.9497 train_time:33485ms step_avg:163.34ms
step:216/1530 train_loss:3.9897 train_time:33647ms step_avg:163.34ms
step:217/1530 train_loss:3.9956 train_time:33811ms step_avg:163.34ms
step:218/1530 train_loss:4.0754 train_time:33974ms step_avg:163.34ms
step:219/1530 train_loss:4.0640 train_time:34138ms step_avg:163.34ms
step:220/1530 train_loss:4.0782 train_time:34301ms step_avg:163.34ms
step:221/1530 train_loss:4.0816 train_time:34463ms step_avg:163.33ms
step:222/1530 train_loss:3.9858 train_time:34626ms step_avg:163.33ms
step:223/1530 train_loss:3.9743 train_time:34789ms step_avg:163.33ms
step:224/1530 train_loss:4.2839 train_time:34952ms step_avg:163.33ms
step:225/1530 train_loss:3.9281 train_time:35116ms step_avg:163.33ms
step:226/1530 train_loss:3.9789 train_time:35278ms step_avg:163.32ms
step:227/1530 train_loss:3.9770 train_time:35440ms step_avg:163.32ms
step:228/1530 train_loss:4.1384 train_time:35605ms step_avg:163.33ms
step:229/1530 train_loss:3.9208 train_time:35770ms step_avg:163.34ms
step:230/1530 train_loss:4.0309 train_time:35936ms step_avg:163.35ms
step:231/1530 train_loss:3.8976 train_time:36103ms step_avg:163.36ms
step:232/1530 train_loss:3.9606 train_time:36267ms step_avg:163.37ms
step:233/1530 train_loss:4.0822 train_time:36434ms step_avg:163.38ms
step:234/1530 train_loss:4.0233 train_time:36603ms step_avg:163.40ms
step:235/1530 train_loss:3.8847 train_time:36767ms step_avg:163.41ms
step:236/1530 train_loss:4.0692 train_time:36934ms step_avg:163.42ms
step:237/1530 train_loss:4.0738 train_time:37100ms step_avg:163.44ms
step:238/1530 train_loss:3.9387 train_time:37265ms step_avg:163.44ms
step:239/1530 train_loss:4.0880 train_time:37430ms step_avg:163.45ms
step:240/1530 train_loss:4.1159 train_time:37598ms step_avg:163.47ms
step:241/1530 train_loss:3.9525 train_time:37763ms step_avg:163.48ms
step:242/1530 train_loss:4.1251 train_time:37930ms step_avg:163.49ms
step:243/1530 train_loss:4.0041 train_time:38095ms step_avg:163.50ms
step:244/1530 train_loss:4.0681 train_time:38262ms step_avg:163.51ms
step:245/1530 train_loss:4.1363 train_time:38428ms step_avg:163.52ms
step:246/1530 train_loss:4.0458 train_time:38595ms step_avg:163.54ms
step:247/1530 train_loss:3.9960 train_time:38760ms step_avg:163.55ms
step:248/1530 train_loss:4.0965 train_time:38927ms step_avg:163.56ms
step:249/1530 train_loss:3.9169 train_time:39093ms step_avg:163.57ms
step:250/1530 train_loss:3.9685 train_time:39258ms step_avg:163.58ms
step:250/1530 val_loss:3.9948 train_time:39306ms step_avg:163.78ms
step:251/1530 train_loss:4.0676 train_time:39426ms step_avg:163.59ms
step:252/1530 train_loss:4.1626 train_time:39592ms step_avg:163.60ms
step:253/1530 train_loss:3.9193 train_time:39760ms step_avg:163.62ms
step:254/1530 train_loss:3.8738 train_time:39926ms step_avg:163.63ms
step:255/1530 train_loss:4.0645 train_time:40091ms step_avg:163.64ms
step:256/1530 train_loss:3.9773 train_time:40256ms step_avg:163.64ms
step:257/1530 train_loss:3.9772 train_time:40424ms step_avg:163.66ms
step:258/1530 train_loss:3.9750 train_time:40591ms step_avg:163.67ms
step:259/1530 train_loss:4.0242 train_time:40757ms step_avg:163.68ms
step:260/1530 train_loss:4.0487 train_time:40924ms step_avg:163.70ms
step:261/1530 train_loss:4.0055 train_time:41090ms step_avg:163.71ms
step:262/1530 train_loss:3.9808 train_time:41257ms step_avg:163.72ms
step:263/1530 train_loss:3.8877 train_time:41423ms step_avg:163.73ms
step:264/1530 train_loss:3.9867 train_time:41589ms step_avg:163.74ms
step:265/1530 train_loss:3.8631 train_time:41755ms step_avg:163.75ms
step:266/1530 train_loss:3.9180 train_time:41921ms step_avg:163.76ms
step:267/1530 train_loss:3.9272 train_time:42087ms step_avg:163.76ms
step:268/1530 train_loss:3.9503 train_time:42253ms step_avg:163.77ms
step:269/1530 train_loss:3.8515 train_time:42418ms step_avg:163.78ms
step:270/1530 train_loss:4.0931 train_time:42585ms step_avg:163.79ms
step:271/1530 train_loss:3.9570 train_time:42750ms step_avg:163.79ms
step:272/1530 train_loss:3.9199 train_time:42915ms step_avg:163.80ms
step:273/1530 train_loss:3.9358 train_time:43084ms step_avg:163.82ms
step:274/1530 train_loss:4.0305 train_time:43249ms step_avg:163.82ms
step:275/1530 train_loss:4.0535 train_time:43416ms step_avg:163.84ms
step:276/1530 train_loss:4.2217 train_time:43585ms step_avg:163.85ms
step:277/1530 train_loss:4.0235 train_time:43750ms step_avg:163.86ms
step:278/1530 train_loss:4.0734 train_time:43916ms step_avg:163.86ms
step:279/1530 train_loss:3.9897 train_time:44083ms step_avg:163.88ms
step:280/1530 train_loss:4.1622 train_time:44250ms step_avg:163.89ms
step:281/1530 train_loss:3.9576 train_time:44417ms step_avg:163.90ms
step:282/1530 train_loss:3.9356 train_time:44585ms step_avg:163.92ms
step:283/1530 train_loss:3.9060 train_time:44751ms step_avg:163.92ms
step:284/1530 train_loss:4.0413 train_time:44917ms step_avg:163.93ms
step:285/1530 train_loss:4.0528 train_time:45083ms step_avg:163.94ms
step:286/1530 train_loss:4.0884 train_time:45248ms step_avg:163.94ms
step:287/1530 train_loss:3.8991 train_time:45413ms step_avg:163.95ms
step:288/1530 train_loss:4.0008 train_time:45580ms step_avg:163.96ms
step:289/1530 train_loss:3.8771 train_time:45745ms step_avg:163.96ms
step:290/1530 train_loss:3.8520 train_time:45910ms step_avg:163.97ms
step:291/1530 train_loss:3.9008 train_time:46076ms step_avg:163.97ms
step:292/1530 train_loss:3.8561 train_time:46241ms step_avg:163.98ms
step:293/1530 train_loss:3.8955 train_time:46406ms step_avg:163.98ms
step:294/1530 train_loss:3.9257 train_time:46571ms step_avg:163.98ms
step:295/1530 train_loss:3.8298 train_time:46736ms step_avg:163.99ms
step:296/1530 train_loss:3.8496 train_time:46902ms step_avg:163.99ms
step:297/1530 train_loss:3.8613 train_time:47067ms step_avg:164.00ms
step:298/1530 train_loss:3.9641 train_time:47232ms step_avg:164.00ms
step:299/1530 train_loss:3.8140 train_time:47397ms step_avg:164.00ms
step:300/1530 train_loss:3.9573 train_time:47564ms step_avg:164.01ms
step:301/1530 train_loss:3.9538 train_time:47729ms step_avg:164.02ms
step:302/1530 train_loss:3.9191 train_time:47894ms step_avg:164.02ms
step:303/1530 train_loss:3.9718 train_time:48059ms step_avg:164.02ms
step:304/1530 train_loss:3.9555 train_time:48224ms step_avg:164.03ms
step:305/1530 train_loss:4.4450 train_time:48390ms step_avg:164.03ms
step:306/1530 train_loss:3.9233 train_time:48554ms step_avg:164.03ms
step:307/1530 train_loss:3.8259 train_time:48720ms step_avg:164.04ms
step:308/1530 train_loss:3.9656 train_time:48885ms step_avg:164.04ms
step:309/1530 train_loss:3.8645 train_time:49050ms step_avg:164.05ms
step:310/1530 train_loss:4.0685 train_time:49214ms step_avg:164.05ms
step:311/1530 train_loss:3.9160 train_time:49381ms step_avg:164.06ms
step:312/1530 train_loss:3.8605 train_time:49546ms step_avg:164.06ms
step:313/1530 train_loss:3.9265 train_time:49711ms step_avg:164.06ms
step:314/1530 train_loss:4.0526 train_time:49877ms step_avg:164.07ms
step:315/1530 train_loss:3.9272 train_time:50042ms step_avg:164.07ms
step:316/1530 train_loss:3.7851 train_time:50207ms step_avg:164.07ms
step:317/1530 train_loss:3.8701 train_time:50373ms step_avg:164.08ms
step:318/1530 train_loss:3.9172 train_time:50538ms step_avg:164.08ms
step:319/1530 train_loss:3.8855 train_time:50703ms step_avg:164.09ms
step:320/1530 train_loss:4.0036 train_time:50868ms step_avg:164.09ms
step:321/1530 train_loss:3.9432 train_time:51032ms step_avg:164.09ms
step:322/1530 train_loss:3.9211 train_time:51199ms step_avg:164.10ms
step:323/1530 train_loss:4.0001 train_time:51365ms step_avg:164.10ms
step:324/1530 train_loss:3.9396 train_time:51529ms step_avg:164.10ms
step:325/1530 train_loss:4.0069 train_time:51693ms step_avg:164.11ms
step:326/1530 train_loss:3.8832 train_time:51859ms step_avg:164.11ms
step:327/1530 train_loss:4.3865 train_time:52024ms step_avg:164.11ms
step:328/1530 train_loss:4.0614 train_time:52189ms step_avg:164.12ms
step:329/1530 train_loss:3.7852 train_time:52355ms step_avg:164.12ms
step:330/1530 train_loss:3.7549 train_time:52522ms step_avg:164.13ms
step:331/1530 train_loss:3.9688 train_time:52686ms step_avg:164.13ms
step:332/1530 train_loss:3.9012 train_time:52851ms step_avg:164.13ms
step:333/1530 train_loss:3.8703 train_time:53017ms step_avg:164.14ms
step:334/1530 train_loss:3.8316 train_time:53183ms step_avg:164.15ms
step:335/1530 train_loss:4.0005 train_time:53348ms step_avg:164.15ms
step:336/1530 train_loss:3.9525 train_time:53512ms step_avg:164.15ms
step:337/1530 train_loss:4.4123 train_time:53678ms step_avg:164.15ms
step:338/1530 train_loss:3.9191 train_time:53844ms step_avg:164.16ms
step:339/1530 train_loss:3.8519 train_time:54008ms step_avg:164.16ms
step:340/1530 train_loss:3.9285 train_time:54174ms step_avg:164.16ms
step:341/1530 train_loss:3.8499 train_time:54341ms step_avg:164.17ms
step:342/1530 train_loss:3.7991 train_time:54509ms step_avg:164.18ms
step:343/1530 train_loss:3.8289 train_time:54676ms step_avg:164.19ms
step:344/1530 train_loss:3.9886 train_time:54845ms step_avg:164.21ms
step:345/1530 train_loss:3.8112 train_time:55013ms step_avg:164.22ms
step:346/1530 train_loss:3.7583 train_time:55183ms step_avg:164.23ms
step:347/1530 train_loss:3.7972 train_time:55351ms step_avg:164.25ms
step:348/1530 train_loss:3.8459 train_time:55519ms step_avg:164.26ms
step:349/1530 train_loss:3.8188 train_time:55688ms step_avg:164.27ms
step:350/1530 train_loss:3.5596 train_time:55856ms step_avg:164.28ms
step:351/1530 train_loss:3.8165 train_time:56025ms step_avg:164.30ms
step:352/1530 train_loss:4.1705 train_time:56192ms step_avg:164.30ms
step:353/1530 train_loss:3.6509 train_time:56362ms step_avg:164.32ms
step:354/1530 train_loss:3.9178 train_time:56529ms step_avg:164.33ms
step:355/1530 train_loss:3.7812 train_time:56697ms step_avg:164.34ms
step:356/1530 train_loss:3.8733 train_time:56866ms step_avg:164.35ms
step:357/1530 train_loss:3.7494 train_time:57033ms step_avg:164.36ms
step:358/1530 train_loss:3.8575 train_time:57201ms step_avg:164.37ms
step:359/1530 train_loss:3.7863 train_time:57370ms step_avg:164.39ms
step:360/1530 train_loss:3.4119 train_time:57539ms step_avg:164.40ms
step:361/1530 train_loss:4.0040 train_time:57708ms step_avg:164.41ms
step:362/1530 train_loss:3.9050 train_time:57875ms step_avg:164.42ms
step:363/1530 train_loss:3.8246 train_time:58043ms step_avg:164.43ms
step:364/1530 train_loss:3.7353 train_time:58211ms step_avg:164.44ms
step:365/1530 train_loss:3.9075 train_time:58379ms step_avg:164.45ms
step:366/1530 train_loss:3.8523 train_time:58548ms step_avg:164.46ms
step:367/1530 train_loss:3.8500 train_time:58716ms step_avg:164.47ms
step:368/1530 train_loss:3.8418 train_time:58885ms step_avg:164.48ms
step:369/1530 train_loss:3.7396 train_time:59052ms step_avg:164.49ms
step:370/1530 train_loss:3.8727 train_time:59220ms step_avg:164.50ms
step:371/1530 train_loss:3.7274 train_time:59388ms step_avg:164.51ms
step:372/1530 train_loss:3.6792 train_time:59556ms step_avg:164.52ms
step:373/1530 train_loss:3.9073 train_time:59723ms step_avg:164.53ms
step:374/1530 train_loss:3.8195 train_time:59890ms step_avg:164.53ms
step:375/1530 train_loss:3.7964 train_time:60059ms step_avg:164.55ms
step:375/1530 val_loss:3.8183 train_time:60107ms step_avg:164.68ms