-
Notifications
You must be signed in to change notification settings - Fork 248
/
Copy pathc249f3c7-b947-4b6f-8a42-56e97ef7712e.txt
2165 lines (2092 loc) · 134 KB
/
c249f3c7-b947-4b6f-8a42-56e97ef7712e.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 02:57:20 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 39C P0 76W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 30C P0 73W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 30C P0 73W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 39C P0 119W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 40C P0 99W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 29C P0 70W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 40C P0 107W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 114W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31957ms step_avg:nanms
step:2/1530 train_loss:10.0815 train_time:32069ms step_avg:nanms
step:3/1530 train_loss:8.3958 train_time:32227ms step_avg:nanms
step:4/1530 train_loss:7.5350 train_time:32388ms step_avg:nanms
step:5/1530 train_loss:7.4574 train_time:32549ms step_avg:nanms
step:6/1530 train_loss:6.9802 train_time:32709ms step_avg:nanms
step:7/1530 train_loss:7.1917 train_time:32869ms step_avg:nanms
step:8/1530 train_loss:6.7305 train_time:33029ms step_avg:nanms
step:9/1530 train_loss:6.6114 train_time:33190ms step_avg:nanms
step:10/1530 train_loss:6.4987 train_time:33349ms step_avg:nanms
step:11/1530 train_loss:6.4679 train_time:115ms step_avg:nanms
step:12/1530 train_loss:6.3592 train_time:275ms step_avg:nanms
step:13/1530 train_loss:6.2551 train_time:435ms step_avg:144.84ms
step:14/1530 train_loss:6.2441 train_time:595ms step_avg:148.64ms
step:15/1530 train_loss:6.1670 train_time:755ms step_avg:150.98ms
step:16/1530 train_loss:6.1115 train_time:916ms step_avg:152.71ms
step:17/1530 train_loss:6.1569 train_time:1076ms step_avg:153.65ms
step:18/1530 train_loss:5.9711 train_time:1236ms step_avg:154.50ms
step:19/1530 train_loss:5.9678 train_time:1396ms step_avg:155.12ms
step:20/1530 train_loss:5.6896 train_time:1557ms step_avg:155.70ms
step:21/1530 train_loss:5.9484 train_time:1718ms step_avg:156.15ms
step:22/1530 train_loss:6.1642 train_time:1878ms step_avg:156.52ms
step:23/1530 train_loss:5.8312 train_time:2038ms step_avg:156.78ms
step:24/1530 train_loss:6.0114 train_time:2198ms step_avg:156.99ms
step:25/1530 train_loss:5.6715 train_time:2359ms step_avg:157.29ms
step:26/1530 train_loss:5.5841 train_time:2521ms step_avg:157.56ms
step:27/1530 train_loss:5.7579 train_time:2682ms step_avg:157.79ms
step:28/1530 train_loss:5.4027 train_time:2843ms step_avg:157.94ms
step:29/1530 train_loss:5.6503 train_time:3004ms step_avg:158.11ms
step:30/1530 train_loss:5.4607 train_time:3164ms step_avg:158.20ms
step:31/1530 train_loss:5.4275 train_time:3326ms step_avg:158.36ms
step:32/1530 train_loss:5.2874 train_time:3486ms step_avg:158.44ms
step:33/1530 train_loss:5.5878 train_time:3646ms step_avg:158.52ms
step:34/1530 train_loss:5.4981 train_time:3807ms step_avg:158.62ms
step:35/1530 train_loss:5.6116 train_time:3966ms step_avg:158.66ms
step:36/1530 train_loss:5.5434 train_time:4127ms step_avg:158.74ms
step:37/1530 train_loss:5.4454 train_time:4287ms step_avg:158.79ms
step:38/1530 train_loss:5.2909 train_time:4448ms step_avg:158.87ms
step:39/1530 train_loss:5.3169 train_time:4609ms step_avg:158.94ms
step:40/1530 train_loss:5.2414 train_time:4769ms step_avg:158.96ms
step:41/1530 train_loss:5.2235 train_time:4930ms step_avg:159.02ms
step:42/1530 train_loss:5.1795 train_time:5090ms step_avg:159.07ms
step:43/1530 train_loss:5.2721 train_time:5250ms step_avg:159.09ms
step:44/1530 train_loss:5.2368 train_time:5410ms step_avg:159.11ms
step:45/1530 train_loss:5.3654 train_time:5570ms step_avg:159.14ms
step:46/1530 train_loss:5.1522 train_time:5730ms step_avg:159.16ms
step:47/1530 train_loss:5.0392 train_time:5890ms step_avg:159.19ms
step:48/1530 train_loss:5.1914 train_time:6049ms step_avg:159.19ms
step:49/1530 train_loss:5.1223 train_time:6210ms step_avg:159.24ms
step:50/1530 train_loss:5.2349 train_time:6370ms step_avg:159.25ms
step:51/1530 train_loss:5.1305 train_time:6529ms step_avg:159.25ms
step:52/1530 train_loss:5.0325 train_time:6690ms step_avg:159.29ms
step:53/1530 train_loss:5.1791 train_time:6851ms step_avg:159.31ms
step:54/1530 train_loss:5.0111 train_time:7010ms step_avg:159.32ms
step:55/1530 train_loss:5.4065 train_time:7171ms step_avg:159.36ms
step:56/1530 train_loss:5.0345 train_time:7331ms step_avg:159.37ms
step:57/1530 train_loss:4.8768 train_time:7491ms step_avg:159.38ms
step:58/1530 train_loss:5.0351 train_time:7651ms step_avg:159.40ms
step:59/1530 train_loss:5.0076 train_time:7812ms step_avg:159.42ms
step:60/1530 train_loss:5.1369 train_time:7972ms step_avg:159.44ms
step:61/1530 train_loss:4.8518 train_time:8131ms step_avg:159.42ms
step:62/1530 train_loss:4.9630 train_time:8292ms step_avg:159.45ms
step:63/1530 train_loss:4.9557 train_time:8452ms step_avg:159.47ms
step:64/1530 train_loss:4.8739 train_time:8612ms step_avg:159.47ms
step:65/1530 train_loss:4.7943 train_time:8771ms step_avg:159.48ms
step:66/1530 train_loss:4.9225 train_time:8932ms step_avg:159.50ms
step:67/1530 train_loss:4.8280 train_time:9092ms step_avg:159.51ms
step:68/1530 train_loss:5.0967 train_time:9252ms step_avg:159.51ms
step:69/1530 train_loss:4.7220 train_time:9412ms step_avg:159.52ms
step:70/1530 train_loss:4.8663 train_time:9572ms step_avg:159.54ms
step:71/1530 train_loss:4.9755 train_time:9732ms step_avg:159.54ms
step:72/1530 train_loss:4.8709 train_time:9892ms step_avg:159.54ms
step:73/1530 train_loss:4.7541 train_time:10053ms step_avg:159.57ms
step:74/1530 train_loss:4.9088 train_time:10213ms step_avg:159.57ms
step:75/1530 train_loss:4.8382 train_time:10372ms step_avg:159.57ms
step:76/1530 train_loss:4.7932 train_time:10532ms step_avg:159.58ms
step:77/1530 train_loss:4.9084 train_time:10693ms step_avg:159.60ms
step:78/1530 train_loss:5.1351 train_time:10854ms step_avg:159.61ms
step:79/1530 train_loss:4.7955 train_time:11013ms step_avg:159.61ms
step:80/1530 train_loss:4.8296 train_time:11174ms step_avg:159.63ms
step:81/1530 train_loss:4.6318 train_time:11335ms step_avg:159.65ms
step:82/1530 train_loss:4.8133 train_time:11496ms step_avg:159.66ms
step:83/1530 train_loss:4.7589 train_time:11656ms step_avg:159.68ms
step:84/1530 train_loss:4.7352 train_time:11817ms step_avg:159.70ms
step:85/1530 train_loss:4.5912 train_time:11978ms step_avg:159.70ms
step:86/1530 train_loss:4.8106 train_time:12137ms step_avg:159.70ms
step:87/1530 train_loss:4.7302 train_time:12298ms step_avg:159.72ms
step:88/1530 train_loss:4.7312 train_time:12460ms step_avg:159.75ms
step:89/1530 train_loss:4.6993 train_time:12621ms step_avg:159.76ms
step:90/1530 train_loss:4.6467 train_time:12783ms step_avg:159.79ms
step:91/1530 train_loss:4.6391 train_time:12944ms step_avg:159.80ms
step:92/1530 train_loss:4.8136 train_time:13105ms step_avg:159.82ms
step:93/1530 train_loss:4.6221 train_time:13265ms step_avg:159.81ms
step:94/1530 train_loss:4.6246 train_time:13427ms step_avg:159.84ms
step:95/1530 train_loss:4.6737 train_time:13588ms step_avg:159.85ms
step:96/1530 train_loss:4.5706 train_time:13748ms step_avg:159.86ms
step:97/1530 train_loss:4.6262 train_time:13909ms step_avg:159.87ms
step:98/1530 train_loss:4.5521 train_time:14069ms step_avg:159.88ms
step:99/1530 train_loss:4.6397 train_time:14230ms step_avg:159.89ms
step:100/1530 train_loss:4.6693 train_time:14391ms step_avg:159.90ms
step:101/1530 train_loss:4.5254 train_time:14551ms step_avg:159.90ms
step:102/1530 train_loss:4.6877 train_time:14712ms step_avg:159.91ms
step:103/1530 train_loss:4.5643 train_time:14872ms step_avg:159.92ms
step:104/1530 train_loss:4.5296 train_time:15032ms step_avg:159.92ms
step:105/1530 train_loss:4.5483 train_time:15192ms step_avg:159.92ms
step:106/1530 train_loss:4.5872 train_time:15352ms step_avg:159.92ms
step:107/1530 train_loss:4.4974 train_time:15514ms step_avg:159.94ms
step:108/1530 train_loss:4.3517 train_time:15674ms step_avg:159.94ms
step:109/1530 train_loss:4.4693 train_time:15834ms step_avg:159.94ms
step:110/1530 train_loss:4.4773 train_time:15995ms step_avg:159.95ms
step:111/1530 train_loss:4.4121 train_time:16154ms step_avg:159.94ms
step:112/1530 train_loss:4.5729 train_time:16315ms step_avg:159.96ms
step:113/1530 train_loss:4.4817 train_time:16475ms step_avg:159.95ms
step:114/1530 train_loss:4.3527 train_time:16636ms step_avg:159.96ms
step:115/1530 train_loss:4.5015 train_time:16799ms step_avg:159.99ms
step:116/1530 train_loss:4.4531 train_time:16963ms step_avg:160.03ms
step:117/1530 train_loss:4.3590 train_time:17127ms step_avg:160.07ms
step:118/1530 train_loss:4.5822 train_time:17291ms step_avg:160.10ms
step:119/1530 train_loss:4.4320 train_time:17453ms step_avg:160.12ms
step:120/1530 train_loss:4.3196 train_time:17619ms step_avg:160.17ms
step:121/1530 train_loss:4.2945 train_time:17784ms step_avg:160.21ms
step:122/1530 train_loss:4.4399 train_time:17947ms step_avg:160.24ms
step:123/1530 train_loss:4.2731 train_time:18112ms step_avg:160.28ms
step:124/1530 train_loss:4.5758 train_time:18276ms step_avg:160.31ms
step:125/1530 train_loss:4.4382 train_time:18439ms step_avg:160.34ms
step:125/1530 val_loss:4.3977 train_time:18486ms step_avg:160.75ms
step:126/1530 train_loss:4.4104 train_time:18605ms step_avg:160.39ms
step:127/1530 train_loss:4.4252 train_time:18771ms step_avg:160.44ms
step:128/1530 train_loss:4.3701 train_time:18935ms step_avg:160.47ms
step:129/1530 train_loss:4.6806 train_time:19099ms step_avg:160.50ms
step:130/1530 train_loss:4.3578 train_time:19263ms step_avg:160.53ms
step:131/1530 train_loss:4.3979 train_time:19427ms step_avg:160.56ms
step:132/1530 train_loss:4.3473 train_time:19591ms step_avg:160.58ms
step:133/1530 train_loss:4.4452 train_time:19755ms step_avg:160.61ms
step:134/1530 train_loss:4.2639 train_time:19919ms step_avg:160.63ms
step:135/1530 train_loss:4.4483 train_time:20083ms step_avg:160.67ms
step:136/1530 train_loss:4.2142 train_time:20248ms step_avg:160.69ms
step:137/1530 train_loss:4.3786 train_time:20411ms step_avg:160.72ms
step:138/1530 train_loss:4.2902 train_time:20576ms step_avg:160.75ms
step:139/1530 train_loss:4.3760 train_time:20739ms step_avg:160.77ms
step:140/1530 train_loss:4.4678 train_time:20903ms step_avg:160.79ms
step:141/1530 train_loss:4.3052 train_time:21067ms step_avg:160.82ms
step:142/1530 train_loss:4.3010 train_time:21232ms step_avg:160.85ms
step:143/1530 train_loss:4.2561 train_time:21397ms step_avg:160.88ms
step:144/1530 train_loss:4.3501 train_time:21561ms step_avg:160.90ms
step:145/1530 train_loss:4.3035 train_time:21727ms step_avg:160.94ms
step:146/1530 train_loss:4.1695 train_time:21892ms step_avg:160.97ms
step:147/1530 train_loss:4.3257 train_time:22056ms step_avg:160.99ms
step:148/1530 train_loss:4.3633 train_time:22220ms step_avg:161.01ms
step:149/1530 train_loss:4.2967 train_time:22383ms step_avg:161.03ms
step:150/1530 train_loss:4.4348 train_time:22548ms step_avg:161.06ms
step:151/1530 train_loss:4.2691 train_time:22712ms step_avg:161.08ms
step:152/1530 train_loss:4.2714 train_time:22876ms step_avg:161.10ms
step:153/1530 train_loss:4.3686 train_time:23040ms step_avg:161.12ms
step:154/1530 train_loss:4.3725 train_time:23204ms step_avg:161.14ms
step:155/1530 train_loss:4.2652 train_time:23367ms step_avg:161.15ms
step:156/1530 train_loss:4.3452 train_time:23532ms step_avg:161.18ms
step:157/1530 train_loss:4.4000 train_time:23696ms step_avg:161.20ms
step:158/1530 train_loss:4.2382 train_time:23860ms step_avg:161.22ms
step:159/1530 train_loss:4.3035 train_time:24024ms step_avg:161.24ms
step:160/1530 train_loss:4.1246 train_time:24190ms step_avg:161.26ms
step:161/1530 train_loss:4.3492 train_time:24354ms step_avg:161.28ms
step:162/1530 train_loss:4.3643 train_time:24518ms step_avg:161.30ms
step:163/1530 train_loss:4.3479 train_time:24681ms step_avg:161.31ms
step:164/1530 train_loss:4.1851 train_time:24844ms step_avg:161.33ms
step:165/1530 train_loss:4.2768 train_time:25008ms step_avg:161.34ms
step:166/1530 train_loss:4.3388 train_time:25173ms step_avg:161.37ms
step:167/1530 train_loss:4.1948 train_time:25338ms step_avg:161.39ms
step:168/1530 train_loss:4.2858 train_time:25502ms step_avg:161.40ms
step:169/1530 train_loss:4.1628 train_time:25665ms step_avg:161.42ms
step:170/1530 train_loss:4.0267 train_time:25831ms step_avg:161.44ms
step:171/1530 train_loss:4.2031 train_time:25995ms step_avg:161.46ms
step:172/1530 train_loss:4.2125 train_time:26158ms step_avg:161.47ms
step:173/1530 train_loss:4.2673 train_time:26321ms step_avg:161.48ms
step:174/1530 train_loss:4.4194 train_time:26485ms step_avg:161.49ms
step:175/1530 train_loss:4.2447 train_time:26647ms step_avg:161.50ms
step:176/1530 train_loss:4.0892 train_time:26810ms step_avg:161.51ms
step:177/1530 train_loss:4.0770 train_time:26974ms step_avg:161.52ms
step:178/1530 train_loss:4.1816 train_time:27136ms step_avg:161.52ms
step:179/1530 train_loss:4.1323 train_time:27299ms step_avg:161.53ms
step:180/1530 train_loss:4.1119 train_time:27462ms step_avg:161.54ms
step:181/1530 train_loss:4.2966 train_time:27626ms step_avg:161.56ms
step:182/1530 train_loss:4.1532 train_time:27790ms step_avg:161.57ms
step:183/1530 train_loss:4.1298 train_time:27953ms step_avg:161.58ms
step:184/1530 train_loss:4.1315 train_time:28116ms step_avg:161.59ms
step:185/1530 train_loss:4.2058 train_time:28280ms step_avg:161.60ms
step:186/1530 train_loss:4.1731 train_time:28442ms step_avg:161.60ms
step:187/1530 train_loss:4.2365 train_time:28604ms step_avg:161.60ms
step:188/1530 train_loss:4.1671 train_time:28903ms step_avg:162.37ms
step:189/1530 train_loss:4.1159 train_time:29242ms step_avg:163.36ms
step:190/1530 train_loss:4.2105 train_time:29403ms step_avg:163.35ms
step:191/1530 train_loss:4.0840 train_time:29567ms step_avg:163.35ms
step:192/1530 train_loss:4.0351 train_time:29730ms step_avg:163.35ms
step:193/1530 train_loss:4.2514 train_time:29895ms step_avg:163.36ms
step:194/1530 train_loss:4.1749 train_time:30057ms step_avg:163.35ms
step:195/1530 train_loss:4.3650 train_time:30219ms step_avg:163.35ms
step:196/1530 train_loss:4.1848 train_time:30383ms step_avg:163.35ms
step:197/1530 train_loss:4.0484 train_time:30546ms step_avg:163.35ms
step:198/1530 train_loss:4.1889 train_time:30707ms step_avg:163.34ms
step:199/1530 train_loss:4.0450 train_time:30870ms step_avg:163.34ms
step:200/1530 train_loss:4.1192 train_time:31034ms step_avg:163.34ms
step:201/1530 train_loss:4.0168 train_time:31197ms step_avg:163.34ms
step:202/1530 train_loss:4.2502 train_time:31360ms step_avg:163.33ms
step:203/1530 train_loss:4.0622 train_time:31523ms step_avg:163.33ms
step:204/1530 train_loss:4.1933 train_time:31685ms step_avg:163.33ms
step:205/1530 train_loss:4.2572 train_time:31849ms step_avg:163.33ms
step:206/1530 train_loss:3.9545 train_time:32011ms step_avg:163.32ms
step:207/1530 train_loss:4.0852 train_time:32175ms step_avg:163.32ms
step:208/1530 train_loss:4.1032 train_time:32337ms step_avg:163.32ms
step:209/1530 train_loss:4.2389 train_time:32501ms step_avg:163.32ms
step:210/1530 train_loss:4.1646 train_time:32664ms step_avg:163.32ms
step:211/1530 train_loss:4.0635 train_time:32826ms step_avg:163.32ms
step:212/1530 train_loss:4.1334 train_time:32990ms step_avg:163.32ms
step:213/1530 train_loss:4.0552 train_time:33153ms step_avg:163.32ms
step:214/1530 train_loss:4.1077 train_time:33316ms step_avg:163.31ms
step:215/1530 train_loss:3.9549 train_time:33478ms step_avg:163.31ms
step:216/1530 train_loss:4.0110 train_time:33641ms step_avg:163.30ms
step:217/1530 train_loss:4.0231 train_time:33804ms step_avg:163.30ms
step:218/1530 train_loss:4.0904 train_time:33967ms step_avg:163.30ms
step:219/1530 train_loss:4.0889 train_time:34130ms step_avg:163.30ms
step:220/1530 train_loss:4.0851 train_time:34294ms step_avg:163.30ms
step:221/1530 train_loss:4.0950 train_time:34456ms step_avg:163.30ms
step:222/1530 train_loss:4.0045 train_time:34619ms step_avg:163.30ms
step:223/1530 train_loss:3.9980 train_time:34783ms step_avg:163.30ms
step:224/1530 train_loss:4.2989 train_time:34946ms step_avg:163.30ms
step:225/1530 train_loss:3.9300 train_time:35110ms step_avg:163.30ms
step:226/1530 train_loss:3.9948 train_time:35274ms step_avg:163.31ms
step:227/1530 train_loss:3.9779 train_time:35437ms step_avg:163.30ms
step:228/1530 train_loss:4.1565 train_time:35602ms step_avg:163.31ms
step:229/1530 train_loss:3.9349 train_time:35769ms step_avg:163.33ms
step:230/1530 train_loss:4.0437 train_time:35935ms step_avg:163.34ms
step:231/1530 train_loss:3.9031 train_time:36101ms step_avg:163.35ms
step:232/1530 train_loss:3.9689 train_time:36267ms step_avg:163.36ms
step:233/1530 train_loss:4.0984 train_time:36434ms step_avg:163.38ms
step:234/1530 train_loss:4.0403 train_time:36599ms step_avg:163.39ms
step:235/1530 train_loss:3.9054 train_time:36766ms step_avg:163.41ms
step:236/1530 train_loss:4.0800 train_time:36933ms step_avg:163.42ms
step:237/1530 train_loss:4.0794 train_time:37099ms step_avg:163.43ms
step:238/1530 train_loss:3.9455 train_time:37266ms step_avg:163.45ms
step:239/1530 train_loss:4.0862 train_time:37431ms step_avg:163.45ms
step:240/1530 train_loss:4.1263 train_time:37598ms step_avg:163.47ms
step:241/1530 train_loss:3.9803 train_time:37763ms step_avg:163.48ms
step:242/1530 train_loss:4.1706 train_time:37930ms step_avg:163.49ms
step:243/1530 train_loss:4.0204 train_time:38096ms step_avg:163.50ms
step:244/1530 train_loss:4.0836 train_time:38262ms step_avg:163.51ms
step:245/1530 train_loss:4.1485 train_time:38428ms step_avg:163.52ms
step:246/1530 train_loss:4.0670 train_time:38595ms step_avg:163.54ms
step:247/1530 train_loss:4.0054 train_time:38761ms step_avg:163.55ms
step:248/1530 train_loss:4.1085 train_time:38929ms step_avg:163.57ms
step:249/1530 train_loss:3.9338 train_time:39095ms step_avg:163.58ms
step:250/1530 train_loss:3.9749 train_time:39261ms step_avg:163.59ms
step:250/1530 val_loss:4.0085 train_time:39309ms step_avg:163.79ms
step:251/1530 train_loss:4.0797 train_time:39430ms step_avg:163.61ms
step:252/1530 train_loss:4.1680 train_time:39598ms step_avg:163.63ms
step:253/1530 train_loss:3.9376 train_time:39765ms step_avg:163.64ms
step:254/1530 train_loss:3.8882 train_time:39931ms step_avg:163.65ms
step:255/1530 train_loss:4.0836 train_time:40096ms step_avg:163.66ms
step:256/1530 train_loss:3.9932 train_time:40262ms step_avg:163.67ms
step:257/1530 train_loss:3.9940 train_time:40428ms step_avg:163.68ms
step:258/1530 train_loss:3.9883 train_time:40594ms step_avg:163.68ms
step:259/1530 train_loss:4.0324 train_time:40760ms step_avg:163.69ms
step:260/1530 train_loss:4.0665 train_time:40927ms step_avg:163.71ms
step:261/1530 train_loss:4.0343 train_time:41093ms step_avg:163.72ms
step:262/1530 train_loss:3.9938 train_time:41259ms step_avg:163.73ms
step:263/1530 train_loss:3.8981 train_time:41426ms step_avg:163.74ms
step:264/1530 train_loss:3.9898 train_time:41591ms step_avg:163.74ms
step:265/1530 train_loss:3.8729 train_time:41757ms step_avg:163.75ms
step:266/1530 train_loss:3.9281 train_time:41924ms step_avg:163.77ms
step:267/1530 train_loss:3.9431 train_time:42089ms step_avg:163.77ms
step:268/1530 train_loss:3.9629 train_time:42255ms step_avg:163.78ms
step:269/1530 train_loss:3.8600 train_time:42421ms step_avg:163.79ms
step:270/1530 train_loss:4.1027 train_time:42587ms step_avg:163.79ms
step:271/1530 train_loss:3.9715 train_time:42753ms step_avg:163.80ms
step:272/1530 train_loss:3.9305 train_time:42920ms step_avg:163.82ms
step:273/1530 train_loss:3.9464 train_time:43085ms step_avg:163.82ms
step:274/1530 train_loss:4.0546 train_time:43252ms step_avg:163.83ms
step:275/1530 train_loss:4.0674 train_time:43418ms step_avg:163.84ms
step:276/1530 train_loss:4.2371 train_time:43585ms step_avg:163.85ms
step:277/1530 train_loss:4.0462 train_time:43750ms step_avg:163.86ms
step:278/1530 train_loss:4.0907 train_time:43917ms step_avg:163.87ms
step:279/1530 train_loss:3.9979 train_time:44084ms step_avg:163.88ms
step:280/1530 train_loss:4.2442 train_time:44251ms step_avg:163.89ms
step:281/1530 train_loss:3.9891 train_time:44418ms step_avg:163.90ms
step:282/1530 train_loss:3.9495 train_time:44584ms step_avg:163.91ms
step:283/1530 train_loss:3.9220 train_time:44749ms step_avg:163.92ms
step:284/1530 train_loss:4.0623 train_time:44917ms step_avg:163.93ms
step:285/1530 train_loss:4.0711 train_time:45083ms step_avg:163.94ms
step:286/1530 train_loss:4.0978 train_time:45248ms step_avg:163.94ms
step:287/1530 train_loss:3.9136 train_time:45412ms step_avg:163.94ms
step:288/1530 train_loss:4.0229 train_time:45578ms step_avg:163.95ms
step:289/1530 train_loss:3.8729 train_time:45743ms step_avg:163.95ms
step:290/1530 train_loss:3.8608 train_time:45908ms step_avg:163.96ms
step:291/1530 train_loss:3.9176 train_time:46073ms step_avg:163.96ms
step:292/1530 train_loss:3.8684 train_time:46239ms step_avg:163.97ms
step:293/1530 train_loss:3.9031 train_time:46404ms step_avg:163.97ms
step:294/1530 train_loss:3.9478 train_time:46569ms step_avg:163.98ms
step:295/1530 train_loss:3.8448 train_time:46735ms step_avg:163.98ms
step:296/1530 train_loss:3.8678 train_time:46899ms step_avg:163.98ms
step:297/1530 train_loss:3.8682 train_time:47064ms step_avg:163.99ms
step:298/1530 train_loss:3.9759 train_time:47230ms step_avg:163.99ms
step:299/1530 train_loss:3.8289 train_time:47395ms step_avg:164.00ms
step:300/1530 train_loss:3.9773 train_time:47560ms step_avg:164.00ms
step:301/1530 train_loss:3.9675 train_time:47726ms step_avg:164.01ms
step:302/1530 train_loss:3.9349 train_time:47890ms step_avg:164.01ms
step:303/1530 train_loss:3.9790 train_time:48056ms step_avg:164.01ms
step:304/1530 train_loss:3.9712 train_time:48223ms step_avg:164.02ms
step:305/1530 train_loss:4.4603 train_time:48388ms step_avg:164.03ms
step:306/1530 train_loss:3.9439 train_time:48553ms step_avg:164.03ms
step:307/1530 train_loss:3.8364 train_time:48717ms step_avg:164.03ms
step:308/1530 train_loss:3.9872 train_time:48883ms step_avg:164.04ms
step:309/1530 train_loss:3.8672 train_time:49048ms step_avg:164.04ms
step:310/1530 train_loss:4.0877 train_time:49213ms step_avg:164.04ms
step:311/1530 train_loss:3.9380 train_time:49378ms step_avg:164.05ms
step:312/1530 train_loss:3.8722 train_time:49544ms step_avg:164.05ms
step:313/1530 train_loss:3.9447 train_time:49709ms step_avg:164.06ms
step:314/1530 train_loss:4.0711 train_time:49875ms step_avg:164.06ms
step:315/1530 train_loss:3.9495 train_time:50040ms step_avg:164.07ms
step:316/1530 train_loss:3.8028 train_time:50206ms step_avg:164.07ms
step:317/1530 train_loss:3.8814 train_time:50371ms step_avg:164.08ms
step:318/1530 train_loss:3.9347 train_time:50536ms step_avg:164.08ms
step:319/1530 train_loss:3.9013 train_time:50701ms step_avg:164.08ms
step:320/1530 train_loss:4.0199 train_time:50867ms step_avg:164.09ms
step:321/1530 train_loss:3.9664 train_time:51032ms step_avg:164.09ms
step:322/1530 train_loss:3.9342 train_time:51199ms step_avg:164.10ms
step:323/1530 train_loss:4.0161 train_time:51365ms step_avg:164.10ms
step:324/1530 train_loss:3.9508 train_time:51530ms step_avg:164.11ms
step:325/1530 train_loss:4.0312 train_time:51695ms step_avg:164.11ms
step:326/1530 train_loss:3.9087 train_time:51860ms step_avg:164.11ms
step:327/1530 train_loss:4.4070 train_time:52026ms step_avg:164.12ms
step:328/1530 train_loss:4.0805 train_time:52191ms step_avg:164.12ms
step:329/1530 train_loss:3.8058 train_time:52355ms step_avg:164.12ms
step:330/1530 train_loss:3.7450 train_time:52522ms step_avg:164.13ms
step:331/1530 train_loss:3.9834 train_time:52687ms step_avg:164.13ms
step:332/1530 train_loss:3.9178 train_time:52852ms step_avg:164.14ms
step:333/1530 train_loss:3.8862 train_time:53017ms step_avg:164.14ms
step:334/1530 train_loss:3.8519 train_time:53183ms step_avg:164.14ms
step:335/1530 train_loss:4.0139 train_time:53349ms step_avg:164.15ms
step:336/1530 train_loss:3.9671 train_time:53512ms step_avg:164.15ms
step:337/1530 train_loss:4.4249 train_time:53680ms step_avg:164.16ms
step:338/1530 train_loss:3.9407 train_time:53846ms step_avg:164.17ms
step:339/1530 train_loss:3.8699 train_time:54011ms step_avg:164.17ms
step:340/1530 train_loss:3.9421 train_time:54175ms step_avg:164.17ms
step:341/1530 train_loss:3.8661 train_time:54343ms step_avg:164.18ms
step:342/1530 train_loss:3.8156 train_time:54510ms step_avg:164.19ms
step:343/1530 train_loss:3.8484 train_time:54679ms step_avg:164.20ms
step:344/1530 train_loss:3.9981 train_time:54847ms step_avg:164.21ms
step:345/1530 train_loss:3.8271 train_time:55017ms step_avg:164.23ms
step:346/1530 train_loss:3.7703 train_time:55185ms step_avg:164.24ms
step:347/1530 train_loss:3.8081 train_time:55353ms step_avg:164.25ms
step:348/1530 train_loss:3.8695 train_time:55521ms step_avg:164.26ms
step:349/1530 train_loss:3.8387 train_time:55689ms step_avg:164.27ms
step:350/1530 train_loss:3.5756 train_time:55857ms step_avg:164.29ms
step:351/1530 train_loss:3.8361 train_time:56026ms step_avg:164.30ms
step:352/1530 train_loss:4.1814 train_time:56195ms step_avg:164.31ms
step:353/1530 train_loss:3.6570 train_time:56363ms step_avg:164.32ms
step:354/1530 train_loss:3.9309 train_time:56529ms step_avg:164.33ms
step:355/1530 train_loss:3.7947 train_time:56698ms step_avg:164.34ms
step:356/1530 train_loss:3.8858 train_time:56866ms step_avg:164.35ms
step:357/1530 train_loss:3.7826 train_time:57035ms step_avg:164.37ms
step:358/1530 train_loss:3.8695 train_time:57204ms step_avg:164.38ms
step:359/1530 train_loss:3.8042 train_time:57372ms step_avg:164.39ms
step:360/1530 train_loss:3.4373 train_time:57540ms step_avg:164.40ms
step:361/1530 train_loss:4.0266 train_time:57709ms step_avg:164.41ms
step:362/1530 train_loss:3.9241 train_time:57876ms step_avg:164.42ms
step:363/1530 train_loss:3.8467 train_time:58044ms step_avg:164.43ms
step:364/1530 train_loss:3.7578 train_time:58212ms step_avg:164.44ms
step:365/1530 train_loss:3.9255 train_time:58381ms step_avg:164.45ms
step:366/1530 train_loss:3.8748 train_time:58550ms step_avg:164.47ms
step:367/1530 train_loss:3.8644 train_time:58718ms step_avg:164.48ms
step:368/1530 train_loss:3.8595 train_time:58886ms step_avg:164.49ms
step:369/1530 train_loss:3.7530 train_time:59054ms step_avg:164.50ms
step:370/1530 train_loss:3.8927 train_time:59221ms step_avg:164.50ms
step:371/1530 train_loss:3.7369 train_time:59388ms step_avg:164.51ms
step:372/1530 train_loss:3.7044 train_time:59556ms step_avg:164.52ms
step:373/1530 train_loss:3.9239 train_time:59724ms step_avg:164.53ms
step:374/1530 train_loss:3.8386 train_time:59891ms step_avg:164.54ms
step:375/1530 train_loss:3.8094 train_time:60059ms step_avg:164.54ms
step:375/1530 val_loss:3.8331 train_time:60108ms step_avg:164.68ms