-
Notifications
You must be signed in to change notification settings - Fork 248
/
Copy pathe0248b14-212b-436b-9a12-ba142d720ab4.txt
2165 lines (2092 loc) · 134 KB
/
e0248b14-212b-436b-9a12-ba142d720ab4.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 03:53:59 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 38C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 30C P0 115W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 96W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 113W / 700W | 23MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 39C P0 123W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 29C P0 99W / 700W | 23MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 39C P0 109W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 119W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31726ms step_avg:nanms
step:2/1530 train_loss:10.0757 train_time:31835ms step_avg:nanms
step:3/1530 train_loss:8.3762 train_time:31996ms step_avg:nanms
step:4/1530 train_loss:7.6191 train_time:32157ms step_avg:nanms
step:5/1530 train_loss:7.4363 train_time:32318ms step_avg:nanms
step:6/1530 train_loss:6.9771 train_time:32478ms step_avg:nanms
step:7/1530 train_loss:7.2237 train_time:32639ms step_avg:nanms
step:8/1530 train_loss:6.7541 train_time:32799ms step_avg:nanms
step:9/1530 train_loss:6.6450 train_time:32961ms step_avg:nanms
step:10/1530 train_loss:6.5076 train_time:33121ms step_avg:nanms
step:11/1530 train_loss:6.4169 train_time:115ms step_avg:nanms
step:12/1530 train_loss:6.3626 train_time:274ms step_avg:nanms
step:13/1530 train_loss:6.2889 train_time:435ms step_avg:144.95ms
step:14/1530 train_loss:6.2455 train_time:595ms step_avg:148.79ms
step:15/1530 train_loss:6.1513 train_time:755ms step_avg:150.96ms
step:16/1530 train_loss:6.1032 train_time:915ms step_avg:152.56ms
step:17/1530 train_loss:6.1653 train_time:1075ms step_avg:153.59ms
step:18/1530 train_loss:5.9902 train_time:1236ms step_avg:154.49ms
step:19/1530 train_loss:5.9660 train_time:1396ms step_avg:155.14ms
step:20/1530 train_loss:5.6972 train_time:1556ms step_avg:155.63ms
step:21/1530 train_loss:5.9465 train_time:1717ms step_avg:156.12ms
step:22/1530 train_loss:6.1615 train_time:1877ms step_avg:156.43ms
step:23/1530 train_loss:5.8394 train_time:2038ms step_avg:156.76ms
step:24/1530 train_loss:6.0311 train_time:2198ms step_avg:157.01ms
step:25/1530 train_loss:5.6768 train_time:2358ms step_avg:157.20ms
step:26/1530 train_loss:5.5814 train_time:2519ms step_avg:157.45ms
step:27/1530 train_loss:5.7729 train_time:2679ms step_avg:157.57ms
step:28/1530 train_loss:5.4105 train_time:2839ms step_avg:157.70ms
step:29/1530 train_loss:5.6548 train_time:2999ms step_avg:157.85ms
step:30/1530 train_loss:5.4713 train_time:3160ms step_avg:158.01ms
step:31/1530 train_loss:5.4303 train_time:3320ms step_avg:158.10ms
step:32/1530 train_loss:5.2821 train_time:3480ms step_avg:158.17ms
step:33/1530 train_loss:5.5655 train_time:3641ms step_avg:158.29ms
step:34/1530 train_loss:5.4880 train_time:3801ms step_avg:158.39ms
step:35/1530 train_loss:5.6038 train_time:3962ms step_avg:158.47ms
step:36/1530 train_loss:5.5378 train_time:4123ms step_avg:158.58ms
step:37/1530 train_loss:5.4441 train_time:4284ms step_avg:158.66ms
step:38/1530 train_loss:5.3051 train_time:4443ms step_avg:158.69ms
step:39/1530 train_loss:5.3268 train_time:4604ms step_avg:158.77ms
step:40/1530 train_loss:5.2411 train_time:4765ms step_avg:158.84ms
step:41/1530 train_loss:5.2492 train_time:4926ms step_avg:158.91ms
step:42/1530 train_loss:5.1910 train_time:5087ms step_avg:158.97ms
step:43/1530 train_loss:5.2826 train_time:5247ms step_avg:158.99ms
step:44/1530 train_loss:5.2321 train_time:5407ms step_avg:159.03ms
step:45/1530 train_loss:5.3760 train_time:5568ms step_avg:159.10ms
step:46/1530 train_loss:5.1772 train_time:5728ms step_avg:159.10ms
step:47/1530 train_loss:5.0751 train_time:5888ms step_avg:159.14ms
step:48/1530 train_loss:5.2039 train_time:6048ms step_avg:159.17ms
step:49/1530 train_loss:5.1359 train_time:6208ms step_avg:159.19ms
step:50/1530 train_loss:5.2461 train_time:6369ms step_avg:159.23ms
step:51/1530 train_loss:5.1408 train_time:6530ms step_avg:159.28ms
step:52/1530 train_loss:5.0356 train_time:6691ms step_avg:159.32ms
step:53/1530 train_loss:5.1752 train_time:6852ms step_avg:159.35ms
step:54/1530 train_loss:4.9979 train_time:7013ms step_avg:159.38ms
step:55/1530 train_loss:5.4167 train_time:7172ms step_avg:159.38ms
step:56/1530 train_loss:5.0339 train_time:7333ms step_avg:159.41ms
step:57/1530 train_loss:4.8919 train_time:7493ms step_avg:159.42ms
step:58/1530 train_loss:5.0326 train_time:7653ms step_avg:159.43ms
step:59/1530 train_loss:5.0168 train_time:7813ms step_avg:159.45ms
step:60/1530 train_loss:5.1372 train_time:7972ms step_avg:159.45ms
step:61/1530 train_loss:4.8538 train_time:8133ms step_avg:159.47ms
step:62/1530 train_loss:4.9729 train_time:8293ms step_avg:159.49ms
step:63/1530 train_loss:4.9735 train_time:8453ms step_avg:159.49ms
step:64/1530 train_loss:5.0418 train_time:8614ms step_avg:159.52ms
step:65/1530 train_loss:4.8100 train_time:8773ms step_avg:159.51ms
step:66/1530 train_loss:4.9145 train_time:8934ms step_avg:159.54ms
step:67/1530 train_loss:4.8167 train_time:9095ms step_avg:159.55ms
step:68/1530 train_loss:5.0829 train_time:9255ms step_avg:159.57ms
step:69/1530 train_loss:4.7349 train_time:9415ms step_avg:159.58ms
step:70/1530 train_loss:4.8479 train_time:9574ms step_avg:159.57ms
step:71/1530 train_loss:4.9598 train_time:9736ms step_avg:159.60ms
step:72/1530 train_loss:4.8812 train_time:9896ms step_avg:159.61ms
step:73/1530 train_loss:4.7797 train_time:10056ms step_avg:159.63ms
step:74/1530 train_loss:4.9233 train_time:10217ms step_avg:159.64ms
step:75/1530 train_loss:4.8668 train_time:10377ms step_avg:159.64ms
step:76/1530 train_loss:4.7935 train_time:10537ms step_avg:159.66ms
step:77/1530 train_loss:4.9136 train_time:10698ms step_avg:159.67ms
step:78/1530 train_loss:5.1370 train_time:10858ms step_avg:159.67ms
step:79/1530 train_loss:4.8215 train_time:11018ms step_avg:159.68ms
step:80/1530 train_loss:4.8621 train_time:11178ms step_avg:159.69ms
step:81/1530 train_loss:4.6528 train_time:11339ms step_avg:159.70ms
step:82/1530 train_loss:4.8240 train_time:11499ms step_avg:159.71ms
step:83/1530 train_loss:4.7662 train_time:11659ms step_avg:159.71ms
step:84/1530 train_loss:4.7635 train_time:11819ms step_avg:159.72ms
step:85/1530 train_loss:4.6308 train_time:11980ms step_avg:159.73ms
step:86/1530 train_loss:4.8405 train_time:12141ms step_avg:159.75ms
step:87/1530 train_loss:4.7606 train_time:12301ms step_avg:159.76ms
step:88/1530 train_loss:4.7623 train_time:12462ms step_avg:159.77ms
step:89/1530 train_loss:4.7148 train_time:12624ms step_avg:159.80ms
step:90/1530 train_loss:4.6508 train_time:12784ms step_avg:159.80ms
step:91/1530 train_loss:4.6249 train_time:12945ms step_avg:159.81ms
step:92/1530 train_loss:4.7989 train_time:13105ms step_avg:159.82ms
step:93/1530 train_loss:4.6251 train_time:13266ms step_avg:159.83ms
step:94/1530 train_loss:4.6449 train_time:13425ms step_avg:159.83ms
step:95/1530 train_loss:4.6950 train_time:13586ms step_avg:159.83ms
step:96/1530 train_loss:4.6048 train_time:13745ms step_avg:159.83ms
step:97/1530 train_loss:4.6596 train_time:13905ms step_avg:159.83ms
step:98/1530 train_loss:4.5872 train_time:14066ms step_avg:159.84ms
step:99/1530 train_loss:4.6694 train_time:14227ms step_avg:159.85ms
step:100/1530 train_loss:4.6808 train_time:14388ms step_avg:159.87ms
step:101/1530 train_loss:4.5378 train_time:14548ms step_avg:159.87ms
step:102/1530 train_loss:4.7094 train_time:14710ms step_avg:159.89ms
step:103/1530 train_loss:4.5833 train_time:14871ms step_avg:159.90ms
step:104/1530 train_loss:4.5457 train_time:15031ms step_avg:159.90ms
step:105/1530 train_loss:4.5710 train_time:15192ms step_avg:159.92ms
step:106/1530 train_loss:4.6741 train_time:15353ms step_avg:159.93ms
step:107/1530 train_loss:4.5306 train_time:15513ms step_avg:159.93ms
step:108/1530 train_loss:4.3762 train_time:15673ms step_avg:159.93ms
step:109/1530 train_loss:4.4942 train_time:15833ms step_avg:159.93ms
step:110/1530 train_loss:4.4909 train_time:15994ms step_avg:159.94ms
step:111/1530 train_loss:4.4303 train_time:16154ms step_avg:159.94ms
step:112/1530 train_loss:4.6024 train_time:16315ms step_avg:159.95ms
step:113/1530 train_loss:4.5091 train_time:16474ms step_avg:159.94ms
step:114/1530 train_loss:4.3860 train_time:16635ms step_avg:159.95ms
step:115/1530 train_loss:4.5238 train_time:16797ms step_avg:159.97ms
step:116/1530 train_loss:4.4675 train_time:16961ms step_avg:160.01ms
step:117/1530 train_loss:4.3803 train_time:17125ms step_avg:160.05ms
step:118/1530 train_loss:4.6102 train_time:17290ms step_avg:160.09ms
step:119/1530 train_loss:4.4743 train_time:17455ms step_avg:160.14ms
step:120/1530 train_loss:4.3470 train_time:17618ms step_avg:160.17ms
step:121/1530 train_loss:4.3027 train_time:17782ms step_avg:160.20ms
step:122/1530 train_loss:4.4497 train_time:17946ms step_avg:160.23ms
step:123/1530 train_loss:4.2878 train_time:18110ms step_avg:160.27ms
step:124/1530 train_loss:4.5965 train_time:18274ms step_avg:160.30ms
step:125/1530 train_loss:4.4601 train_time:18438ms step_avg:160.33ms
step:125/1530 val_loss:4.4160 train_time:18485ms step_avg:160.73ms
step:126/1530 train_loss:4.4322 train_time:18605ms step_avg:160.39ms
step:127/1530 train_loss:4.4615 train_time:18770ms step_avg:160.43ms
step:128/1530 train_loss:4.4082 train_time:18934ms step_avg:160.46ms
step:129/1530 train_loss:4.7061 train_time:19099ms step_avg:160.49ms
step:130/1530 train_loss:4.3576 train_time:19262ms step_avg:160.51ms
step:131/1530 train_loss:4.4159 train_time:19425ms step_avg:160.53ms
step:132/1530 train_loss:4.3593 train_time:19589ms step_avg:160.56ms
step:133/1530 train_loss:4.4524 train_time:19752ms step_avg:160.58ms
step:134/1530 train_loss:4.2765 train_time:19916ms step_avg:160.62ms
step:135/1530 train_loss:4.4603 train_time:20081ms step_avg:160.65ms
step:136/1530 train_loss:4.2250 train_time:20243ms step_avg:160.66ms
step:137/1530 train_loss:4.3782 train_time:20407ms step_avg:160.69ms
step:138/1530 train_loss:4.2991 train_time:20572ms step_avg:160.72ms
step:139/1530 train_loss:4.3958 train_time:20737ms step_avg:160.75ms
step:140/1530 train_loss:4.4765 train_time:20901ms step_avg:160.78ms
step:141/1530 train_loss:4.3186 train_time:21064ms step_avg:160.80ms
step:142/1530 train_loss:4.3130 train_time:21227ms step_avg:160.81ms
step:143/1530 train_loss:4.2577 train_time:21394ms step_avg:160.86ms
step:144/1530 train_loss:4.3530 train_time:21558ms step_avg:160.88ms
step:145/1530 train_loss:4.3115 train_time:21722ms step_avg:160.90ms
step:146/1530 train_loss:4.1817 train_time:21886ms step_avg:160.93ms
step:147/1530 train_loss:4.3446 train_time:22050ms step_avg:160.95ms
step:148/1530 train_loss:4.3775 train_time:22214ms step_avg:160.97ms
step:149/1530 train_loss:4.3192 train_time:22379ms step_avg:161.00ms
step:150/1530 train_loss:4.4442 train_time:22542ms step_avg:161.01ms
step:151/1530 train_loss:4.2719 train_time:22706ms step_avg:161.03ms
step:152/1530 train_loss:4.2799 train_time:22870ms step_avg:161.06ms
step:153/1530 train_loss:4.3647 train_time:23035ms step_avg:161.08ms
step:154/1530 train_loss:4.3702 train_time:23200ms step_avg:161.11ms
step:155/1530 train_loss:4.2799 train_time:23364ms step_avg:161.13ms
step:156/1530 train_loss:4.3479 train_time:23526ms step_avg:161.14ms
step:157/1530 train_loss:4.4106 train_time:23693ms step_avg:161.18ms
step:158/1530 train_loss:4.2481 train_time:23857ms step_avg:161.20ms
step:159/1530 train_loss:4.3084 train_time:24020ms step_avg:161.21ms
step:160/1530 train_loss:4.1437 train_time:24184ms step_avg:161.22ms
step:161/1530 train_loss:4.3592 train_time:24347ms step_avg:161.24ms
step:162/1530 train_loss:4.3632 train_time:24511ms step_avg:161.26ms
step:163/1530 train_loss:4.3556 train_time:24675ms step_avg:161.28ms
step:164/1530 train_loss:4.2047 train_time:24839ms step_avg:161.29ms
step:165/1530 train_loss:4.2908 train_time:25002ms step_avg:161.31ms
step:166/1530 train_loss:4.3439 train_time:25165ms step_avg:161.32ms
step:167/1530 train_loss:4.1948 train_time:25329ms step_avg:161.33ms
step:168/1530 train_loss:4.2914 train_time:25493ms step_avg:161.35ms
step:169/1530 train_loss:4.1710 train_time:25658ms step_avg:161.37ms
step:170/1530 train_loss:4.0307 train_time:25822ms step_avg:161.39ms
step:171/1530 train_loss:4.2100 train_time:25985ms step_avg:161.40ms
step:172/1530 train_loss:4.2132 train_time:26148ms step_avg:161.41ms
step:173/1530 train_loss:4.2643 train_time:26310ms step_avg:161.41ms
step:174/1530 train_loss:4.4182 train_time:26473ms step_avg:161.42ms
step:175/1530 train_loss:4.2429 train_time:26637ms step_avg:161.44ms
step:176/1530 train_loss:4.0917 train_time:26799ms step_avg:161.44ms
step:177/1530 train_loss:4.0697 train_time:26961ms step_avg:161.44ms
step:178/1530 train_loss:4.1809 train_time:27123ms step_avg:161.45ms
step:179/1530 train_loss:4.1202 train_time:27287ms step_avg:161.46ms
step:180/1530 train_loss:4.1058 train_time:27448ms step_avg:161.46ms
step:181/1530 train_loss:4.2952 train_time:27612ms step_avg:161.48ms
step:182/1530 train_loss:4.1582 train_time:27776ms step_avg:161.49ms
step:183/1530 train_loss:4.1449 train_time:27938ms step_avg:161.49ms
step:184/1530 train_loss:4.1239 train_time:28101ms step_avg:161.50ms
step:185/1530 train_loss:4.2078 train_time:28264ms step_avg:161.51ms
step:186/1530 train_loss:4.1662 train_time:28425ms step_avg:161.51ms
step:187/1530 train_loss:4.2342 train_time:28589ms step_avg:161.52ms
step:188/1530 train_loss:4.1738 train_time:28884ms step_avg:162.27ms
step:189/1530 train_loss:4.1263 train_time:29229ms step_avg:163.29ms
step:190/1530 train_loss:4.2146 train_time:29391ms step_avg:163.29ms
step:191/1530 train_loss:4.0843 train_time:29553ms step_avg:163.28ms
step:192/1530 train_loss:4.0483 train_time:29717ms step_avg:163.28ms
step:193/1530 train_loss:4.2562 train_time:29879ms step_avg:163.27ms
step:194/1530 train_loss:4.1743 train_time:30040ms step_avg:163.26ms
step:195/1530 train_loss:4.3514 train_time:30203ms step_avg:163.26ms
step:196/1530 train_loss:4.1699 train_time:30366ms step_avg:163.26ms
step:197/1530 train_loss:4.0463 train_time:30529ms step_avg:163.26ms
step:198/1530 train_loss:4.1772 train_time:30694ms step_avg:163.26ms
step:199/1530 train_loss:4.0398 train_time:30857ms step_avg:163.26ms
step:200/1530 train_loss:4.1187 train_time:31019ms step_avg:163.26ms
step:201/1530 train_loss:4.0198 train_time:31182ms step_avg:163.26ms
step:202/1530 train_loss:4.2549 train_time:31345ms step_avg:163.25ms
step:203/1530 train_loss:4.0645 train_time:31507ms step_avg:163.25ms
step:204/1530 train_loss:4.1868 train_time:31670ms step_avg:163.25ms
step:205/1530 train_loss:4.2494 train_time:31834ms step_avg:163.25ms
step:206/1530 train_loss:3.9449 train_time:31996ms step_avg:163.25ms
step:207/1530 train_loss:4.0828 train_time:32160ms step_avg:163.25ms
step:208/1530 train_loss:4.0969 train_time:32322ms step_avg:163.24ms
step:209/1530 train_loss:4.2297 train_time:32485ms step_avg:163.24ms
step:210/1530 train_loss:4.1912 train_time:32648ms step_avg:163.24ms
step:211/1530 train_loss:4.0612 train_time:32814ms step_avg:163.25ms
step:212/1530 train_loss:4.1178 train_time:32977ms step_avg:163.25ms
step:213/1530 train_loss:4.0522 train_time:33139ms step_avg:163.24ms
step:214/1530 train_loss:4.1160 train_time:33302ms step_avg:163.24ms
step:215/1530 train_loss:3.9645 train_time:33464ms step_avg:163.24ms
step:216/1530 train_loss:4.0060 train_time:33628ms step_avg:163.24ms
step:217/1530 train_loss:4.0125 train_time:33792ms step_avg:163.25ms
step:218/1530 train_loss:4.0726 train_time:33956ms step_avg:163.25ms
step:219/1530 train_loss:4.0610 train_time:34119ms step_avg:163.25ms
step:220/1530 train_loss:4.0762 train_time:34282ms step_avg:163.25ms
step:221/1530 train_loss:4.0876 train_time:34444ms step_avg:163.24ms
step:222/1530 train_loss:4.0079 train_time:34607ms step_avg:163.24ms
step:223/1530 train_loss:3.9896 train_time:34771ms step_avg:163.24ms
step:224/1530 train_loss:4.2995 train_time:34936ms step_avg:163.25ms
step:225/1530 train_loss:3.9251 train_time:35100ms step_avg:163.25ms
step:226/1530 train_loss:3.9905 train_time:35262ms step_avg:163.25ms
step:227/1530 train_loss:3.9785 train_time:35424ms step_avg:163.25ms
step:228/1530 train_loss:4.1437 train_time:35590ms step_avg:163.26ms
step:229/1530 train_loss:3.9204 train_time:35757ms step_avg:163.28ms
step:230/1530 train_loss:4.0416 train_time:35922ms step_avg:163.28ms
step:231/1530 train_loss:3.8978 train_time:36088ms step_avg:163.30ms
step:232/1530 train_loss:3.9621 train_time:36254ms step_avg:163.31ms
step:233/1530 train_loss:4.0896 train_time:36420ms step_avg:163.32ms
step:234/1530 train_loss:4.0380 train_time:36586ms step_avg:163.33ms
step:235/1530 train_loss:3.8923 train_time:36752ms step_avg:163.34ms
step:236/1530 train_loss:4.0804 train_time:36919ms step_avg:163.36ms
step:237/1530 train_loss:4.0741 train_time:37084ms step_avg:163.37ms
step:238/1530 train_loss:3.9352 train_time:37250ms step_avg:163.38ms
step:239/1530 train_loss:4.0774 train_time:37417ms step_avg:163.39ms
step:240/1530 train_loss:4.1092 train_time:37583ms step_avg:163.40ms
step:241/1530 train_loss:3.9586 train_time:37748ms step_avg:163.41ms
step:242/1530 train_loss:4.1345 train_time:37916ms step_avg:163.43ms
step:243/1530 train_loss:4.0090 train_time:38082ms step_avg:163.44ms
step:244/1530 train_loss:4.0727 train_time:38247ms step_avg:163.45ms
step:245/1530 train_loss:4.1347 train_time:38413ms step_avg:163.46ms
step:246/1530 train_loss:4.0640 train_time:38580ms step_avg:163.48ms
step:247/1530 train_loss:4.0216 train_time:38745ms step_avg:163.48ms
step:248/1530 train_loss:4.1001 train_time:38912ms step_avg:163.49ms
step:249/1530 train_loss:3.9136 train_time:39078ms step_avg:163.51ms
step:250/1530 train_loss:3.9707 train_time:39243ms step_avg:163.51ms
step:250/1530 val_loss:4.0063 train_time:39291ms step_avg:163.71ms
step:251/1530 train_loss:4.0754 train_time:39413ms step_avg:163.54ms
step:252/1530 train_loss:4.1701 train_time:39579ms step_avg:163.55ms
step:253/1530 train_loss:3.9266 train_time:39745ms step_avg:163.56ms
step:254/1530 train_loss:3.8776 train_time:39911ms step_avg:163.57ms
step:255/1530 train_loss:4.0718 train_time:40077ms step_avg:163.58ms
step:256/1530 train_loss:3.9838 train_time:40242ms step_avg:163.58ms
step:257/1530 train_loss:3.9921 train_time:40408ms step_avg:163.60ms
step:258/1530 train_loss:3.9937 train_time:40575ms step_avg:163.61ms
step:259/1530 train_loss:4.0258 train_time:40742ms step_avg:163.62ms
step:260/1530 train_loss:4.0484 train_time:40907ms step_avg:163.63ms
step:261/1530 train_loss:4.0143 train_time:41075ms step_avg:163.65ms
step:262/1530 train_loss:3.9921 train_time:41242ms step_avg:163.66ms
step:263/1530 train_loss:3.8910 train_time:41407ms step_avg:163.67ms
step:264/1530 train_loss:3.9813 train_time:41574ms step_avg:163.68ms
step:265/1530 train_loss:3.8649 train_time:41740ms step_avg:163.69ms
step:266/1530 train_loss:3.9227 train_time:41906ms step_avg:163.70ms
step:267/1530 train_loss:3.9318 train_time:42072ms step_avg:163.71ms
step:268/1530 train_loss:3.9575 train_time:42238ms step_avg:163.71ms
step:269/1530 train_loss:3.8498 train_time:42402ms step_avg:163.72ms
step:270/1530 train_loss:4.0985 train_time:42569ms step_avg:163.73ms
step:271/1530 train_loss:3.9645 train_time:42736ms step_avg:163.74ms
step:272/1530 train_loss:3.9146 train_time:42901ms step_avg:163.74ms
step:273/1530 train_loss:3.9429 train_time:43067ms step_avg:163.75ms
step:274/1530 train_loss:4.0353 train_time:43234ms step_avg:163.77ms
step:275/1530 train_loss:4.0576 train_time:43399ms step_avg:163.77ms
step:276/1530 train_loss:4.2236 train_time:43565ms step_avg:163.78ms
step:277/1530 train_loss:4.0390 train_time:43732ms step_avg:163.79ms
step:278/1530 train_loss:4.0837 train_time:43898ms step_avg:163.80ms
step:279/1530 train_loss:3.9983 train_time:44064ms step_avg:163.81ms
step:280/1530 train_loss:4.2142 train_time:44231ms step_avg:163.82ms
step:281/1530 train_loss:3.9709 train_time:44397ms step_avg:163.83ms
step:282/1530 train_loss:3.9430 train_time:44564ms step_avg:163.84ms
step:283/1530 train_loss:3.9073 train_time:44731ms step_avg:163.85ms
step:284/1530 train_loss:4.0410 train_time:44897ms step_avg:163.86ms
step:285/1530 train_loss:4.0548 train_time:45062ms step_avg:163.86ms
step:286/1530 train_loss:4.0908 train_time:45226ms step_avg:163.86ms
step:287/1530 train_loss:3.9131 train_time:45393ms step_avg:163.87ms
step:288/1530 train_loss:4.0086 train_time:45557ms step_avg:163.87ms
step:289/1530 train_loss:3.8766 train_time:45723ms step_avg:163.88ms
step:290/1530 train_loss:3.8541 train_time:45888ms step_avg:163.89ms
step:291/1530 train_loss:3.9036 train_time:46054ms step_avg:163.89ms
step:292/1530 train_loss:3.8629 train_time:46218ms step_avg:163.89ms
step:293/1530 train_loss:3.9012 train_time:46383ms step_avg:163.90ms
step:294/1530 train_loss:3.9328 train_time:46550ms step_avg:163.91ms
step:295/1530 train_loss:3.8447 train_time:46714ms step_avg:163.91ms
step:296/1530 train_loss:3.8624 train_time:46879ms step_avg:163.91ms
step:297/1530 train_loss:3.8648 train_time:47045ms step_avg:163.92ms
step:298/1530 train_loss:3.9697 train_time:47212ms step_avg:163.93ms
step:299/1530 train_loss:3.8201 train_time:47376ms step_avg:163.93ms
step:300/1530 train_loss:3.9668 train_time:47541ms step_avg:163.94ms
step:301/1530 train_loss:3.9605 train_time:47707ms step_avg:163.94ms
step:302/1530 train_loss:3.9323 train_time:47872ms step_avg:163.95ms
step:303/1530 train_loss:3.9813 train_time:48038ms step_avg:163.95ms
step:304/1530 train_loss:3.9561 train_time:48202ms step_avg:163.95ms
step:305/1530 train_loss:4.4451 train_time:48368ms step_avg:163.96ms
step:306/1530 train_loss:3.9351 train_time:48534ms step_avg:163.97ms
step:307/1530 train_loss:3.8352 train_time:48699ms step_avg:163.97ms
step:308/1530 train_loss:3.9756 train_time:48863ms step_avg:163.97ms
step:309/1530 train_loss:3.8787 train_time:49031ms step_avg:163.98ms
step:310/1530 train_loss:4.0783 train_time:49196ms step_avg:163.99ms
step:311/1530 train_loss:3.9239 train_time:49361ms step_avg:163.99ms
step:312/1530 train_loss:3.8597 train_time:49527ms step_avg:164.00ms
step:313/1530 train_loss:3.9339 train_time:49693ms step_avg:164.00ms
step:314/1530 train_loss:4.0613 train_time:49859ms step_avg:164.01ms
step:315/1530 train_loss:3.9397 train_time:50023ms step_avg:164.01ms
step:316/1530 train_loss:3.7911 train_time:50190ms step_avg:164.02ms
step:317/1530 train_loss:3.8732 train_time:50354ms step_avg:164.02ms
step:318/1530 train_loss:3.9178 train_time:50520ms step_avg:164.03ms
step:319/1530 train_loss:3.8874 train_time:50686ms step_avg:164.03ms
step:320/1530 train_loss:4.0141 train_time:50854ms step_avg:164.05ms
step:321/1530 train_loss:3.9601 train_time:51019ms step_avg:164.05ms
step:322/1530 train_loss:3.9266 train_time:51184ms step_avg:164.05ms
step:323/1530 train_loss:4.0110 train_time:51350ms step_avg:164.06ms
step:324/1530 train_loss:3.9404 train_time:51515ms step_avg:164.06ms
step:325/1530 train_loss:4.0138 train_time:51680ms step_avg:164.06ms
step:326/1530 train_loss:3.8898 train_time:51846ms step_avg:164.07ms
step:327/1530 train_loss:4.3932 train_time:52012ms step_avg:164.08ms
step:328/1530 train_loss:4.0716 train_time:52177ms step_avg:164.08ms
step:329/1530 train_loss:3.7912 train_time:52342ms step_avg:164.08ms
step:330/1530 train_loss:3.7438 train_time:52507ms step_avg:164.08ms
step:331/1530 train_loss:3.9749 train_time:52673ms step_avg:164.09ms
step:332/1530 train_loss:3.9097 train_time:52839ms step_avg:164.10ms
step:333/1530 train_loss:3.8883 train_time:53003ms step_avg:164.10ms
step:334/1530 train_loss:3.8379 train_time:53169ms step_avg:164.10ms
step:335/1530 train_loss:4.0116 train_time:53334ms step_avg:164.11ms
step:336/1530 train_loss:3.9668 train_time:53498ms step_avg:164.10ms
step:337/1530 train_loss:4.4240 train_time:53663ms step_avg:164.11ms
step:338/1530 train_loss:3.9328 train_time:53829ms step_avg:164.11ms
step:339/1530 train_loss:3.8575 train_time:53994ms step_avg:164.12ms
step:340/1530 train_loss:3.9333 train_time:54159ms step_avg:164.12ms
step:341/1530 train_loss:3.8551 train_time:54325ms step_avg:164.12ms
step:342/1530 train_loss:3.8070 train_time:54493ms step_avg:164.14ms
step:343/1530 train_loss:3.8359 train_time:54661ms step_avg:164.15ms
step:344/1530 train_loss:3.9947 train_time:54829ms step_avg:164.16ms
step:345/1530 train_loss:3.8160 train_time:54997ms step_avg:164.17ms
step:346/1530 train_loss:3.7681 train_time:55165ms step_avg:164.18ms
step:347/1530 train_loss:3.7904 train_time:55335ms step_avg:164.20ms
step:348/1530 train_loss:3.8514 train_time:55502ms step_avg:164.21ms
step:349/1530 train_loss:3.8220 train_time:55671ms step_avg:164.22ms
step:350/1530 train_loss:3.5712 train_time:55840ms step_avg:164.24ms
step:351/1530 train_loss:3.8266 train_time:56008ms step_avg:164.24ms
step:352/1530 train_loss:4.1802 train_time:56175ms step_avg:164.26ms
step:353/1530 train_loss:3.6712 train_time:56343ms step_avg:164.26ms
step:354/1530 train_loss:3.9218 train_time:56510ms step_avg:164.27ms
step:355/1530 train_loss:3.7808 train_time:56679ms step_avg:164.29ms
step:356/1530 train_loss:3.8784 train_time:56847ms step_avg:164.30ms
step:357/1530 train_loss:3.7525 train_time:57016ms step_avg:164.31ms
step:358/1530 train_loss:3.8700 train_time:57183ms step_avg:164.32ms
step:359/1530 train_loss:3.8006 train_time:57354ms step_avg:164.34ms
step:360/1530 train_loss:3.4228 train_time:57523ms step_avg:164.35ms
step:361/1530 train_loss:4.0122 train_time:57691ms step_avg:164.36ms
step:362/1530 train_loss:3.9090 train_time:57861ms step_avg:164.38ms
step:363/1530 train_loss:3.8324 train_time:58028ms step_avg:164.38ms
step:364/1530 train_loss:3.7378 train_time:58196ms step_avg:164.39ms
step:365/1530 train_loss:3.9109 train_time:58364ms step_avg:164.40ms
step:366/1530 train_loss:3.8541 train_time:58533ms step_avg:164.42ms
step:367/1530 train_loss:3.8519 train_time:58699ms step_avg:164.42ms
step:368/1530 train_loss:3.8445 train_time:58867ms step_avg:164.43ms
step:369/1530 train_loss:3.7441 train_time:59035ms step_avg:164.44ms
step:370/1530 train_loss:3.8743 train_time:59202ms step_avg:164.45ms
step:371/1530 train_loss:3.7307 train_time:59371ms step_avg:164.46ms
step:372/1530 train_loss:3.6949 train_time:59541ms step_avg:164.48ms
step:373/1530 train_loss:3.9099 train_time:59709ms step_avg:164.49ms
step:374/1530 train_loss:3.8275 train_time:59877ms step_avg:164.50ms
step:375/1530 train_loss:3.8016 train_time:60044ms step_avg:164.50ms
step:375/1530 val_loss:3.8237 train_time:60092ms step_avg:164.64ms