-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMaskRCNN_Dataset.py
542 lines (425 loc) · 19.3 KB
/
MaskRCNN_Dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import torch
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.segmentation_mask import SegmentationMask
import os
import yaml
from PIL.Image import open as open_img
from torch.utils.data import ConcatDataset, Dataset
import numpy
import random
from torchvision.transforms import functional as F
from torchvision.transforms import RandomResizedCrop, ColorJitter
#from torchvision import transforms as trans
import skimage.io as io
#from maskrcnn_benchmark.data.transforms.transforms import Compose as T_compose
class ObjectDataLoader(Dataset):
"""
Pytorch dataset loader for T-Less
it can loads each of the subfiles inside T-less Dataset
"""
# def __init__(self, data_dir=None, train=None, cam=None, set_idx=0, transforms=None):
def __init__(self, data_dir=None, set_idx=None, transforms=None):
super(ObjectDataLoader, self)
self.threshold = -0.8
self.cont_flo = 1e-6
self.set_idx = set_idx
self.data_dir = (data_dir + '{:0>2d}/').format(set_idx)
self.data_dir_img = self.data_dir + 'rgb/'
self.data_dir_dp = self.data_dir + 'depth/'
# These create the name list of rgb and depth image in data_dir_img and data_dir_dp
self.img_name = [name for name in os.listdir(self.data_dir_img)
if os.path.isfile(os.path.join(self.data_dir_img, name))]
self.depth_name = [name for name in os.listdir(self.data_dir_dp)
if os.path.isfile(os.path.join(self.data_dir_dp, name))]
assert len(self.img_name) != len(self.data_dir_dp)
self.gt_data_dir = os.path.join(self.data_dir, 'gt.yml')
try:
with open(self.gt_data_dir, 'r') as f:
loaded = yaml.load(f, Loader=yaml.Loader)
if 'train' in self.gt_data_dir:
self.gt = [Obj[0]['obj_bb'] for key, Obj in loaded.items()]
# print(gt)
self.cls_idx = [Obj[0]['obj_id'] for key, Obj in loaded.items()]
else:
gt_dict = [Obj for key, Obj in loaded.items()]
self.gt = []
self.cls_idx = []
for i in range(len(gt_dict)):
self.gt.append([gt_dict[i][j]['obj_bb'] for j in range(len(gt_dict[i]))])
self.cls_idx.append([gt_dict[i][j]['obj_id'] for j in range(len(gt_dict[i]))])
except FileNotFoundError:
raise FileNotFoundError('YAML was not found')
assert len(self.img_name) == len(self.gt)
self._transform = transforms
def __len__(self):
#assert len(self.img_name) == len(self.data_dir_dp)
return len(self.img_name)
def __getitem__(self, idx):
img_name = os.path.join(self.data_dir_img,
self.img_name[idx])
image = open_img(img_name).convert('RGB')
boxes = torch.as_tensor(self.gt[idx]).reshape(-1, 4) # guard against no boxes
target = BoxList(boxes, image.size, mode="xywh").convert("xyxy")
classes = torch.as_tensor(self.cls_idx[idx])[None]
target.add_field("labels", classes)
masks = torch.as_tensor(1*self.gen_mask_from_img(image))
masks = SegmentationMask(masks, image.size, mode='mask')
#print(masks)
target.add_field("masks", masks)
target = target.clip_to_image(remove_empty=True)
if self._transform:
image, target = self._transform(image, target)
return image, target, idx
def __repr__(self):
# TODO
pass
def get_img_info(self, index):
img_name = os.path.join(self.data_dir_img,
self.img_name[index])
img = open_img(img_name)
img_height, img_width = img.size
return {"height": img_height, "width": img_width}
# Mask reconstruction from the color image
def gen_mask_from_img(self, img):
return numpy.log10(numpy.sum(img/numpy.max(img, keepdims=2), axis=2) + self.cont_flo) >= self.threshold
# The bbox from tless are not well constructed. We should reconstruct the bbox from the reconstructed mask.
# Max and Min x,y non-zeros indices from the masks
def cal_bbox_from_mask(self, mask):
pass
class ObjectDataLoader_with_trans(ObjectDataLoader):
"""
Pytorch dataset loader for T-Less
it can loads each of the subfiles inside T-less Dataset
"""
def __init__(self, data_dir=None, set_idx=None, transforms=None):
#self.size = [round(720*0.8), round(540*0.8)]
self.size = [380, 380]
super(ObjectDataLoader_with_trans, self)
super(ObjectDataLoader_with_trans, self).__init__(data_dir, set_idx, transforms)
def __getitem__(self, idx):
img_name = os.path.join(self.data_dir_img,
self.img_name[idx])
image = open_img(img_name).convert('RGB')
#print(self.size, image.size)
i, j, h, w = self.get_params(image, self.size)
#print("image size : {} ; {}, {}, {}, {}".format(image.size, i, j, h, w))
image = F.crop(image, i, j, h, w)
boxes = torch.as_tensor(self.gt[idx]).reshape(-1, 4) # guard against no boxes
#print(boxes, self.gt[idx])
#print("Boxes :", boxes.shape)
boxes = boxes - torch.as_tensor([i, j, 0, 0])
#print(boxes)
target = BoxList(boxes, image.size, mode="xywh").convert("xyxy")
classes = torch.as_tensor(self.cls_idx[idx]).reshape(-1)
#print("Classes :", classes.shape)
target.add_field("labels", classes)
masks = torch.as_tensor(1*self.gen_mask_from_img(image))
masks = SegmentationMask(masks, image.size, mode='mask')
target.add_field("masks", masks)
target = target.clip_to_image(remove_empty=True)
if self._transform:
image, target = self._transform(image, target)
return image, target, idx
@staticmethod
def get_params(img, output_size):
w, h = img.size
# TODO : This is not correct for rectangular shape as the th and tw are switched. Need to check
th, tw = output_size
if w == tw and h == th:
return 0, 0, h, w
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
return i, j, th, tw
class concat_tless(ConcatDataset):
"""
data_dir (str) : the root directory of all T-Less dataset file
train (str) : take either 'train' or 'val' or 'test'
cam (str) : the camera used for the dataset
set_idx (list) : [start_index, end_index]
transform (callable) : transformation function of pytorch dataset.
"""
def __init__(self, data_dir=None, train=None, cam=None, set_idx=[1, 20], transforms=None, other_dataset_list=None):
self.data_dir = data_dir
#self.train = train
#self.cam = cam
self.set_idx = set_idx
self._transforms = transforms
if not data_dir or not set_idx:
#if not data_dir or not train or not cam or not set_idx:
raise Exception('The dataset directory is not completed')
#if transforms:
# print('Transforms is not defined')
self.concate_dateset = self.contca(other_dataset_list)
super(concat_tless, self)
super(concat_tless, self).__init__(self.concate_dateset)
def contca(self, other_dataset_list):
tless = [ObjectDataLoader(data_dir=self.data_dir, set_idx=idx,
transforms=self._transforms)
for idx in range(self.set_idx[0], self.set_idx[1] + 1, 1)]
if other_dataset_list:
return tless.extend(other_dataset_list)
else:
return tless
def get_img_info(self, idx):
# TODO: make it general
#img, _, _ = self.__getitem__(idx)
#print(img.shape)
img_width, img_height = 400, 400 #img.shape[1:3]
return {"height": img_height, "width": img_width}
class change_bg(object):
"""This is the background changing function for T-less
It will load the whole background images in order to speed up the processing speed
However, if there are large number of background, this is not desirable.
Also, here assume the size of the bg is larger than the object
Using resize maybe better than cropping
"""
def __init__(self, data_dir):
if 'train' in data_dir:
self.bg_dir = data_dir[0:data_dir.find('train')] + 'background'
else:
self.bg_dir = data_dir[0:data_dir.find('test')] + 'background'
self.bg_name = [name for name in os.listdir(self.bg_dir)
if os.path.isfile(os.path.join(self.bg_dir, name))]
self.num_bg = len(self.bg_name)
#print(self.num_bg)
self.bg_object = [open_img(os.path.join(self.bg_dir, bg_name)).convert('RGB') for bg_name in self.bg_name]
self.bg_scale = [0.1, 0.2, 0.4]
def __call__(self, image, target):
rand_num = random.randint(0, self.num_bg-1)
bg = self.bg_object[rand_num]
#print(rand_num)
#print(bg.size, image.shape[1:3])
i, j, h, w = self.get_params(bg, image.shape[1:3])
bg = F.crop(bg, i, j, h, w)
bg = F.to_tensor(bg)
mask = target.get_field('masks').get_mask_tensor()
mask = mask.float()#.type(torch.float32)
#print(mask.dtype, image.dtype, bg.dtype)
#print(mask.device, image.device, bg.device)
img = image*mask + torch.eq(mask, 0).float()*bg
#print(bg.shape, mask.shape, image.shape)
return img, target
@staticmethod
def get_params(img, output_size):
w, h = img.size
# TODO : This is not correct for rectangular shape as the th and tw are switched. Need to check
tw, th = output_size
if w == tw and h == th:
return 0, 0, h, w
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
return i, j, th, tw
# TODO: This will not work as transform take object 1 by 1. We cannot access the batch from here
# Either rewrite a loading function
# or we write a layer before the model.
class change_bg_rescale(object):
"""This is the background changing function for T-less
It will load the whole background images in order to speed up the processing speed
However, if there are large number of background, this is not desirable.
Also, here assume the size of the bg is larger than the object
Using resize maybe better than cropping
"""
def __init__(self, data_dir, out_size=800):
if 'train' in data_dir:
self.bg_dir = data_dir[0:data_dir.find('train')] + 'background'
else:
self.bg_dir = data_dir[0:data_dir.find('test')] + 'background'
self.bg_name = [name for name in os.listdir(self.bg_dir)
if os.path.isfile(os.path.join(self.bg_dir, name))]
self.num_bg = len(self.bg_name)
self.bg_object = [open_img(os.path.join(self.bg_dir, bg_name)).convert('RGB') for bg_name in self.bg_name]
self.bg_scale = (0.5, 1.0)
self.obj_scale = (0.2, 0.4, 0.6, 0.8, 1)
#self.obj_size = obj_size
self.bg_size = out_size
self.rrc = RandomResizedCrop(size=out_size, scale=self.bg_scale)
self.rrc_obj = self.class_resize(min_size=500, max_size=(600, 575, 550))
self.color_jig = ColorJitter()
def __call__(self, image, target):
img, target = self.rrc_obj(image, target)
# target = target.convert('xywh')
# plt.figure()
# plt.subplot(1, 2, 1)
# print(target.bbox)
# plt.pcolor(torch.sum(F.to_tensor(image), dim=0))#.permute(1,2,0))
# show_bbox(target.bbox.reshape(-1))
# plt.subplot(1, 2, 2)
# plt.pcolor(target.get_field('masks').get_mask_tensor())
# plt.show()
# Generate the Random Integer to pick the background from the backgound data
rand_num = random.randint(0, self.num_bg-1)
bg = self.bg_object[rand_num]
bg = self.rrc(bg)
bg = self.color_jig(bg)
bg_size = bg.size
r_mask = torch.zeros(bg_size)
bg = F.to_tensor(bg)
mask = target.get_field('masks').get_mask_tensor()
classes = target.get_field('labels')
nz_idx = torch.nonzero(mask)
img_sx, img_sy = img.size
img = F.to_tensor(img)
rand_x, rand_y = random.randint(0, self.bg_size-img_sx-1), \
random.randint(0, self.bg_size-img_sy-1)
r_mask[nz_idx[:, 0] + rand_y, nz_idx[:, 1] + rand_x] = \
mask[nz_idx[:, 0], nz_idx[:, 1]].float()
bg[:, nz_idx[:, 0] + rand_y, nz_idx[:, 1] + rand_x] = \
img[:, nz_idx[:, 0], nz_idx[:, 1]]
#print('BBox :{}, Mode :{}'.format(target.bbox, target.mode))
#print(rand_x, rand_y)
boxes = target.bbox + torch.tensor([rand_x, rand_y, rand_x, rand_y], dtype=torch.float)
target = BoxList(boxes, bg_size, mode="xyxy")
target.add_field("labels", classes)
r_mask = SegmentationMask(r_mask, bg_size, mode='mask')
target.add_field("masks", r_mask)
target.clip_to_image(remove_empty=True)
return bg, target
# To avoid mutual call, subclass is defined here.
# Dependent call will raise infinite loop.
class class_resize(object):
def __init__(self, min_size, max_size):
if not isinstance(min_size, (list, tuple)):
min_size = (min_size,)
self.min_size = min_size
self.max_size = max_size
# modified from torchvision to add support for max size
def get_size(self, image_size):
w, h = image_size
size = random.choice(self.min_size)
max_size = random.choice(self.max_size)
if max_size is not None:
min_original_size = float(min((w, h)))
max_original_size = float(max((w, h)))
if max_original_size / min_original_size * size > max_size:
size = int(round(max_size * min_original_size / max_original_size))
if (w <= h and w == size) or (h <= w and h == size):
return (h, w)
if w < h:
ow = size
oh = int(size * h / w)
else:
oh = size
ow = int(size * w / h)
return (oh, ow)
def __call__(self, image, target):
size = self.get_size(image.size)
image = F.resize(image, size)
target = target.resize(image.size)
return image, target
# TODO
class mix_objects(object):
def __init(self, trans_xy):
if isinstance(trans_xy, (list, tuple)):
self.trans_x = trans_xy[0]
self.trans_y = trans_xy[1]
else:
self.trans_x, self.trans_y = trans_xy, trans_xy
def __call__(self, image, target):
size = image.size
trans_x = torch.randint(0, self.trans_x, size)
trans_y = torch.randint(0, self.trans_x, size)
img = target.get_field('masks')
bbox = target['bbox']
return image, target
def main():
import cv2
from maskrcnn_benchmark.utils import cv2_util
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, image, target):
for t in self.transforms:
image, target = t(image, target)
return image, target
def __repr__(self):
format_string = self.__class__.__name__ + "("
for t in self.transforms:
format_string += "\n"
format_string += " {0}".format(t)
format_string += "\n)"
return format_string
def show_bbox(bbox):
rect = Rectangle((bbox[0], bbox[1]), bbox[2], bbox[3], facecolor='none', edgecolor='r', linewidth=3)
plt.gca().add_patch(rect)
# This is not working
def compute_colors_for_labels(labels):
"""
Simple function that adds fixed colors depending on the class
"""
palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
colors = labels[:, None] * palette
colors = (colors % 255).numpy().astype("uint8")
return colors
# This is not working
def overlay_boxes(image, predictions):
labels = predictions.get_field("labels")
boxes = predictions.bbox
colors = compute_colors_for_labels(labels).tolist()
for box, color in zip(boxes, colors):
box = box.to(torch.int64)
top_left, bottom_right = box[:2].tolist(), box[2:].tolist()
image = cv2.rectangle(
image, tuple(top_left), tuple(bottom_right), tuple(color), 1
)
return image
# This is not working
def overlay_mask(image, predictions):
mask = predictions.get_field("masks").get_mask_tensor()[None].numpy()
#print(masks.shape)
labels = predictions.get_field("labels")
color = compute_colors_for_labels(labels).tolist()
#for mask, color in zip(masks, colors):
# print(mask.shape)
thresh = mask[:, :, :]
contours, hierarchy = cv2_util.findContours(
thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
image = cv2.drawContours(image, contours, -1, color, 3)
composite = image
return composite
print('Initializing the Dataset...')
data_dir = '/mnt/DATA/Download/Dataset/t-less_v2/train_primesense/'
#ran1 = random.randint(1, 30)
ran1 = random.randint(1, 30)
ran2 = random.randint(1, 1296) - 1
Dataset = ObjectDataLoader(data_dir=data_dir, set_idx=ran1, transforms=Compose([change_bg_rescale(data_dir)]))
#print(len(Dataset[ran2]))
image, box, _ = Dataset[ran2]
box = box.convert('xywh')
bbox = box.bbox.reshape(-1)
print(bbox)
#image = Dataset[ran2][0].numpy()
##x = Dataset[ran2][1]
##result = torch.sum(torch.from_numpy(overlay_boxes(image, x)), dim=0)#.permute(1, 2, 0)
result = torch.from_numpy(overlay_boxes(image.numpy(), box)).permute(1, 2, 0)
plt.figure()
plt.subplot(1, 2, 1)
plt.imshow(result)#, origin='lower')
show_bbox(bbox)
plt.subplot(1, 2, 2)
plt.imshow(box.get_field('masks').get_mask_tensor())#, origin='lower')
plt.show()
#Combined_set = concat_tless(data_dir='/mnt/2A9EAD839EAD47E1/Download/Dataset/T_Less_Dataset/',
# train='train', cam='primesense', set_idx=[1, 2])
#print(Combined_set.__class__)
#dataloader = DataLoader(Combined_set, batch_size=400, num_workers=4)
#print(type(Combined_set).__name))
#print(ConcatDataset in type(Combined_set))
#for img in range(len(Combined_set)):
# print('Processing Image : {}'.format(img))
# if img >= 5:
# break
# Data_dict = Combined_set[img * 500]
# batch dataloader cannot work on this directly
# img in this is PIL , but when we are running in normal program, the totensor function will make PIL to tensor
#for i_batch, sample_batched in enumerate(dataloader):
# print(i_batch, sample_batched)
# if i_batch == 3:
# break
#Data_dict = Combined_set[img*500]
#x = Combined_set.target['mask']
#dataloader = torch.utils.data.DataLoader(Combined_set, batch_size=400, num_workers=4)
if __name__ == '__main__':
main()