-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdem_cutouts.py
61 lines (46 loc) · 1.77 KB
/
dem_cutouts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#Random cutout DEM to produce data for unsupervised training of autoencoder
import rasterio as rio
import albumentations as A
import cv2
import numpy as np
def main():
dem_path = "data/dtm_10m.tif"
cutout_size = 256
#Read lake_elev
with rio.open(dem_path) as dem_input:
dem_profile = dem_input.profile
dem = dem_input.read(1)
rows, cols = dem.shape
dem[dem == -9999] = np.nan
#Crop ratio 64 to 1024 pixels, calc scale
scale_min = 64/rows
scale_max = 1024/rows
#Square cutout at different scales using different interpolation methods
cutout_transform = A.OneOf([
A.RandomResizedCrop(height=cutout_size,width=cutout_size, interpolation= cv2.INTER_NEAREST,
scale = (scale_min, scale_max), ratio=(0.75, 1.25)),
A.RandomResizedCrop(height=cutout_size,width=cutout_size, interpolation= cv2.INTER_LINEAR,
scale = (scale_min, scale_max), ratio=(0.75, 1.25)),
A.RandomResizedCrop(height=cutout_size,width=cutout_size, interpolation= cv2.INTER_CUBIC,
scale = (scale_min, scale_max), ratio=(0.75, 1.25)),
],
p=1.0
)
#Max count (10%) of na cells
max_na_cells = 0.1*(256*256)
#Create 10000 random cutouts
i = 0
dataset_size = 10000
img_cutout = []
while i < dataset_size:
img_random = cutout_transform(image=dem)
img_random = img_random["image"]
if np.isnan(img_random).sum() > max_na_cells:
continue
img_cutout.append(img_random)
i += 1
img_cutout_np = np.stack(img_cutout)
img_cutout_np[np.isnan(img_cutout_np)] = 0
np.savez("data/data.npz", dem = img_cutout_np)
if __name__ == "__main__":
main()