-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstage2_StrDA.py
572 lines (468 loc) · 20.6 KB
/
stage2_StrDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
import os
import sys
import time
import random
import argparse
from tqdm import tqdm
import numpy as np
from PIL import ImageFile
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import Subset
from utils.averager import Averager
from utils.converter import AttnLabelConverter, CTCLabelConverter
from utils.load_config import load_config
from source.model import Model
from source.dataset import Pseudolabel_Dataset, hierarchical_dataset, get_dataloader
from test import validation
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ImageFile.LOAD_TRUNCATED_IMAGES = True
torch.multiprocessing.set_sharing_strategy("file_system")
def pseudo_labeling(args, model, converter, target_data, adapting_list, round):
""" Make prediction and return them """
# get adapt_data
data = Subset(target_data, adapting_list)
data = Pseudolabel_Dataset(data, adapting_list)
dataloader = get_dataloader(args, data, args.batch_size_val, shuffle=False)
model.eval()
with torch.no_grad():
list_adapt_data = list()
list_pseudo_data = list()
list_pseudo_label = list()
mean_conf = 0
for (image_tensors, image_indexs) in tqdm(dataloader):
batch_size = len(image_indexs)
image = image_tensors.to(device)
if args.Prediction == "CTC":
preds = model(image)
else:
text_for_pred = (
torch.LongTensor(batch_size)
.fill_(args.sos_token_index)
.to(device)
)
preds = model(image, text_for_pred, is_train=False)
# select max probabilty (greedy decoding) then decode index to character
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
_, preds_index = preds.max(2)
preds_str = converter.decode(preds_index, preds_size)
preds_prob = F.softmax(preds, dim=2)
preds_max_prob, _ = preds_prob.max(dim=2)
for pred, pred_max_prob, index in zip(
preds_str, preds_max_prob, image_indexs
):
if args.Prediction == "Attn":
pred_EOS = pred.find("[EOS]")
pred = pred[:pred_EOS] # prune after "end of sentence" token ([s])
pred_max_prob = pred_max_prob[:pred_EOS]
if (
"[PAD]" in pred
or "[UNK]" in pred
or "[SOS]" in pred
):
list_pseudo_label.append(pred)
continue
# calculate confidence score (= multiply of pred_max_prob)
if len(pred_max_prob.cumprod(dim=0)) > 0:
confidence_score = pred_max_prob.cumprod(dim=0)[-1].item()
else:
list_pseudo_label.append(pred)
continue
list_adapt_data.append(index)
list_pseudo_data.append(pred)
mean_conf += confidence_score
mean_conf /= (len(list_adapt_data))
# adjust mean_conf (round_down)
mean_conf = int(mean_conf * 10) / 10
# save pseudo-labels
with open(f"stratify/{args.method}/pseudolabel_{round}.txt", "w") as file:
for string in list_pseudo_label:
file.write(string + "\n")
# free cache
torch.cuda.empty_cache()
return list_adapt_data, list_pseudo_data, mean_conf
def self_training(args, filtered_parameters, model, criterion, converter, relative_path, \
source_loader, valid_loader, adapting_loader, mean_conf, round=0):
num_iter = (args.total_iter // args.val_interval) // args.num_subsets * args.val_interval
if round == 1:
num_iter += (args.total_iter // args.val_interval) % args.num_subsets * args.val_interval
# set up iter dataloader
source_loader_iter = iter(source_loader)
adapting_loader_iter = iter(adapting_loader)
# set up optimizer
optimizer = torch.optim.AdamW(filtered_parameters, lr=args.lr, weight_decay=args.weight_decay)
# set up scheduler
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=args.lr,
cycle_momentum=False,
div_factor=20,
final_div_factor=1000,
total_steps=num_iter,
)
train_loss_avg = Averager()
source_loss_avg = Averager()
adapting_loss_avg = Averager()
best_score = float("-inf")
score_descent = 0
log = "-" * 80 +"\n"
log += "Start Self-Training (Scene Text Recognition - STR)...\n"
model.train()
# training loop
for iteration in tqdm(
range(0, num_iter + 1),
total=num_iter,
position=0,
leave=True,
):
if (iteration % args.val_interval == 0 or iteration == num_iter):
# valiation part
model.eval()
with torch.no_grad():
(
valid_loss,
current_score,
preds,
confidence_score,
labels,
infer_time,
length_of_data,
) = validation(model, criterion, valid_loader, converter, args)
if (current_score >= best_score):
score_descent = 0
best_score = current_score
torch.save(
model.state_dict(),
f"trained_model/{relative_path}/{args.model}_round{round}.pth",
)
else:
score_descent += 1
# log
lr = optimizer.param_groups[0]["lr"]
valid_log = f"\nValidation at {iteration}/{num_iter}:\n"
valid_log += f"Train_loss: {train_loss_avg.val():0.4f}, Valid_loss: {valid_loss:0.4f}, "
valid_log += f"Source_loss: {source_loss_avg.val():0.4f}, Adapting_loss: {adapting_loss_avg.val():0.4f},\n"
valid_log += f"Current_lr: {lr:0.7f}, "
valid_log += f"Current_score: {current_score:0.2f}, Best_score: {best_score:0.2f}, "
valid_log += f"Score_descent: {score_descent}\n"
print(valid_log)
log += valid_log
log += "\n" + "-" * 80 +"\n"
train_loss_avg.reset()
source_loss_avg.reset()
adapting_loss_avg.reset()
if iteration == num_iter:
log += f"Stop training at iteration {iteration}!\n"
print(f"Stop training at iteration {iteration}!\n")
break
# training part
model.train()
""" Loss of labeled data (source domain) """
try:
images_source_tensor, labels_source = next(source_loader_iter)
except StopIteration:
del source_loader_iter
source_loader_iter = iter(source_loader)
images_source_tensor, labels_source = next(source_loader_iter)
images_source = images_source_tensor.to(device)
labels_source_index, labels_source_length = converter.encode(
labels_source, batch_max_length=args.batch_max_length
)
batch_source_size = len(labels_source)
if args.Prediction == "CTC":
preds_source = model(images_source)
preds_source_size = torch.IntTensor([preds_source.size(1)] * batch_source_size)
preds_source_log_softmax = preds_source.log_softmax(2).permute(1, 0, 2)
loss_source = criterion(preds_source_log_softmax, labels_source_index, preds_source_size, labels_source_length)
else:
preds_source = model(images_source, labels_source_index[:, :-1]) # align with Attention.forward
target_source = labels_source_index[:, 1:] # without [SOS] Symbol
loss_source = criterion(
preds_source.view(-1, preds_source.shape[-1]), target_source.contiguous().view(-1)
)
""" Loss of pseudo-labeled data (target domain) """
try:
images_adapting_tensor, labels_adapting = next(adapting_loader_iter)
except StopIteration:
del adapting_loader_iter
adapting_loader_iter = iter(adapting_loader)
images_adapting_tensor, labels_adapting = next(adapting_loader_iter)
images_adapting = images_adapting_tensor.to(device)
labels_adapting_index, labels_adapting_length = converter.encode(
labels_adapting, batch_max_length=args.batch_max_length
)
batch_adapting_size = len(labels_adapting)
if args.Prediction == "CTC":
preds_adapting = model(images_adapting)
preds_adapting_size = torch.IntTensor([preds_adapting.size(1)] * batch_adapting_size)
preds_adapting_log_softmax = preds_adapting.log_softmax(2).permute(1, 0, 2)
loss_adapting = criterion(preds_adapting_log_softmax, labels_adapting_index, preds_adapting_size, labels_adapting_length)
else:
preds_adapting = model(images_adapting, labels_adapting_index[:, :-1]) # align with Attention.forward
target_adapting = labels_adapting_index[:, 1:] # without [SOS] Symbol
loss_adapting = criterion(
preds_adapting.view(-1, preds_adapting.shape[-1]), target_adapting.contiguous().view(-1)
)
loss = (1 - mean_conf) * loss_source + loss_adapting * mean_conf
model.zero_grad(set_to_none=True)
loss.backward()
torch.nn.utils.clip_grad_norm_(
model.parameters(), args.grad_clip
) # gradient clipping with 5 (Default)
optimizer.step()
train_loss_avg.add(loss)
source_loss_avg.add(loss_source)
adapting_loss_avg.add(loss_adapting)
scheduler.step()
model.eval()
# save model
# torch.save(
# model.state_dict(),
# f"trained_model/{relative_path}/{args.model}_round{round}.pth",
# )
# save log
log += f"Model is saved at trained_model/{relative_path}/{args.model}_round{round}.pth"
print(log, file= open(f"log/{relative_path}/log_self_training_round{round}.txt", "w"))
# free cache
torch.cuda.empty_cache()
def main(args):
dashed_line = "-" * 80
main_log = ""
if args.method == "HDGE":
if args.beta == -1:
raise ValueError("Please set beta value for HDGE method.")
relative_path = f"{args.method}/{args.beta}_beta/{args.num_subsets}_subsets"
else:
if args.discriminator == "":
raise ValueError("Please set discriminator for DD method.")
relative_path = f"{args.method}/{args.discriminator}/{args.num_subsets}_subsets"
# to make directories for saving models and logs if not exist
os.makedirs(f"log/{relative_path}/", exist_ok=True)
os.makedirs(f"trained_model/{relative_path}/", exist_ok=True)
# load source domain data
print(dashed_line)
main_log = dashed_line + "\n"
print("Load source domain data...")
main_log += "Load source domain data...\n"
source_data, source_data_log = hierarchical_dataset(args.source_data, args)
source_loader = get_dataloader(args, source_data, args.batch_size, shuffle=True, aug=args.aug)
print(source_data_log, end="")
main_log += source_data_log
# load target domain data (raw)
print(dashed_line)
main_log += dashed_line + "\n"
print("Load target domain data...")
main_log += "Load target domain data...\n"
target_data, target_data_log= hierarchical_dataset(args.target_data, args, mode="raw")
print(target_data_log, end="")
main_log += target_data_log
# load validation data
print(dashed_line)
main_log += dashed_line + "\n"
print("Load validation data...")
main_log += "Load validation data...\n"
valid_data, valid_data_log = hierarchical_dataset(args.valid_data, args)
valid_loader = get_dataloader(args, valid_data, args.batch_size_val, shuffle=False) # "True" to check training progress with validation function.
print(valid_data_log, end="")
main_log += valid_data_log
""" Model configuration """
if args.Prediction == "CTC":
converter = CTCLabelConverter(args.character)
else:
converter = AttnLabelConverter(args.character)
args.sos_token_index = converter.dict["[SOS]"]
args.eos_token_index = converter.dict["[EOS]"]
args.num_class = len(converter.character)
# setup model
print(dashed_line)
main_log += dashed_line + "\n"
print("Init model")
main_log += "Init model\n"
model = Model(args)
# data parallel for multi-GPU
model = torch.nn.DataParallel(model).to(device)
model.train()
# load pretrained model
try:
pretrained = torch.load(args.saved_model)
model.load_state_dict(pretrained)
except:
raise ValueError("The pre-trained weights do not match the model! Carefully check!")
torch.save(
pretrained,
f"trained_model/{relative_path}/{args.model}_round0.pth"
)
print(f"Load pretrained model from {args.saved_model}")
main_log += f"Load pretrained model from {args.saved_model}\n"
# setup loss
if args.Prediction == "CTC":
criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
else:
# ignore [PAD] token
criterion = torch.nn.CrossEntropyLoss(ignore_index=converter.dict["[PAD]"]).to(device)
# filter that only require gradient descent
filtered_parameters = []
params_num = []
for p in filter(lambda p: p.requires_grad, model.parameters()):
filtered_parameters.append(p)
params_num.append(np.prod(p.size()))
print(f"Trainable params num: {sum(params_num)}")
main_log += f"Trainable params num: {sum(params_num)}\n"
""" Final options """
print("------------ Options -------------")
main_log += "------------ Options -------------\n"
opt = vars(args)
for k, v in opt.items():
if str(k) == "character" and len(str(v)) > 500:
print(f"{str(k)}: So many characters to show all: number of characters: {len(str(v))}")
main_log += f"{str(k)}: So many characters to show all: number of characters: {len(str(v))}\n"
else:
print(f"{str(k)}: {str(v)}")
main_log += f"{str(k)}: {str(v)}\n"
print(dashed_line)
main_log += dashed_line + "\n"
print("Start Adapting (Scene Text Recognition - STR)...\n")
main_log += "Start Adapting (Scene Text Recognition - STR)...\n"
for round in range(args.num_subsets):
print(f"Round {round+1}/{args.num_subsets}: \n")
main_log += f"\nRound {round+1}/{args.num_subsets}: \n"
# load best model of previous round
print(f"- Load best model of round {round}.")
main_log += f"- Load best model of round {round}. \n"
model.load_state_dict(
torch.load(f"trained_model/{relative_path}/{args.model}_round{round}.pth")
)
# select subset
try:
adapting_list = list(np.load(f"stratify/{relative_path}/subset_{round + 1}.npy"))
except:
raise ValueError(f"stratify/{relative_path}/subset_{round + 1}.npy not found.")
# assign pseudo labels
print("- Pseudo labeling...\n")
main_log += "- Pseudo labeling...\n"
list_adapt_data, list_pseudo_data, mean_conf = pseudo_labeling(
args, model, converter, target_data, adapting_list, round + 1
)
print(f"- Number of adapting data: {len(list_adapt_data)}")
main_log += f"- Number of adapting data: {len(list_adapt_data)} \n"
print(f"- Mean of confidence score: {mean_conf}")
main_log += f"- Mean of confidence scores: {mean_conf} \n"
# restrict adapting data
adapting_data = Subset(target_data, list_adapt_data)
adapting_data = Pseudolabel_Dataset(adapting_data, list_pseudo_data)
# get dataloader
adapting_loader = get_dataloader(args, adapting_data, args.batch_size, shuffle=True, aug=args.aug)
# self-training
print(dashed_line)
print("- Start Self-Training (Scene Text Recognition - STR)...")
main_log += "\n- Start Self-Training (Scene Text Recognition - STR)..."
self_training_start = time.time()
if (round >= args.checkpoint):
self_training(args, filtered_parameters, model, criterion, converter, relative_path, \
source_loader, valid_loader, adapting_loader, mean_conf, round + 1)
self_training_end = time.time()
print(f"Processing time: {self_training_end - self_training_start}s")
print(f"Model is saved at trained_model/{relative_path}/{args.model}_round{round}.pth")
print(f"Saved log for adapting round to: 'log/{relative_path}/log_self_training_round{round + 1}.txt'")
main_log += f"\nProcessing time: {self_training_end - self_training_start}s"
main_log += f"\nModel is saved at trained_model/{relative_path}/{args.model}_round{round}.pth"
main_log += f"\nSaved log for adapting round to: 'log/{relative_path}/log_self_training_round{round + 1}.txt'"
main_log += "\n" + dashed_line + "\n"
print(dashed_line * 3)
# free cache
torch.cuda.empty_cache()
# save log
print(main_log, file= open(f"log/{args.method}/log_StrDA.txt", "w"))
return
if __name__ == "__main__":
""" Argument """
parser = argparse.ArgumentParser()
config = load_config("config/STR.yaml")
parser.set_defaults(**config)
parser.add_argument(
"--source_data", default="data/train/synth/", help="path to source dataset",
)
parser.add_argument(
"--target_data", default="data/train/real/", help="path to adaptation dataset",
)
parser.add_argument(
"--valid_data", default="data/val/", help="path to validation dataset",
)
parser.add_argument(
"--saved_model",
required=True,
help="path to source-trained model for adaptation",
)
parser.add_argument(
"--batch_size", type=int, default=128, help="input batch size",
)
parser.add_argument(
"--batch_size_val", type=int, default=512, help="input batch size val",
)
parser.add_argument(
"--total_iter", type=int, default=50000, help="number of iterations to train for",
)
parser.add_argument(
"--val_interval", type=int, default=500, help="interval between each validation",
)
parser.add_argument(
"--NED", action="store_true", help="for Normalized edit_distance",
)
""" Model Architecture """
parser.add_argument(
"--model",
type=str,
required=True,
help="CRNN|TRBA",
)
""" Adaptation """
parser.add_argument(
"--num_subsets",
type=int,
required=True,
help="hyper-parameter n, number of subsets partitioned from target domain data",
)
parser.add_argument(
"--method",
required=True,
help="select Domain Stratifying method, DD|HDGE",
)
parser.add_argument("--discriminator", default="", help="for DD method, choose discriminator, CRNN|TRBA")
parser.add_argument("--beta", type=float, default=-1, help="for HDGE method, hyper-parameter beta, 0<beta<1")
parser.add_argument(
"--aug", action="store_true", default=False, help="augmentation or not",
)
parser.add_argument(
"--checkpoint", type=int, default=0, help="iteration of checkpoint",
)
args = parser.parse_args()
if args.model == "CRNN": # CRNN = NVBC
args.Transformation = "None"
args.FeatureExtraction = "VGG"
args.SequenceModeling = "BiLSTM"
args.Prediction = "CTC"
elif args.model == "TRBA": # TRBA
args.Transformation = "TPS"
args.FeatureExtraction = "ResNet"
args.SequenceModeling = "BiLSTM"
args.Prediction = "Attn"
""" Seed and GPU setting """
random.seed(args.manual_seed)
np.random.seed(args.manual_seed)
torch.manual_seed(args.manual_seed)
torch.cuda.manual_seed(args.manual_seed)
cudnn.benchmark = True # it fasten training
cudnn.deterministic = True
if sys.platform == "win32":
args.workers = 0
args.gpu_name = "_".join(torch.cuda.get_device_name().split())
if sys.platform == "linux":
args.CUDA_VISIBLE_DEVICES = os.environ["CUDA_VISIBLE_DEVICES"]
else:
args.CUDA_VISIBLE_DEVICES = 0 # for convenience
command_line_input = " ".join(sys.argv)
print(
f"Command line input: CUDA_VISIBLE_DEVICES={args.CUDA_VISIBLE_DEVICES} python {command_line_input}"
)
main(args)