-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsupervised_learning.py
312 lines (255 loc) · 10.1 KB
/
supervised_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os
import sys
import random
import argparse
from tqdm import tqdm
import numpy as np
from PIL import ImageFile
import torch
import torch.backends.cudnn as cudnn
from utils.averager import Averager
from utils.converter import AttnLabelConverter, CTCLabelConverter
from utils.load_config import load_config
from source.model import Model
from source.dataset import hierarchical_dataset, get_dataloader
from test import validation
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ImageFile.LOAD_TRUNCATED_IMAGES = True
torch.multiprocessing.set_sharing_strategy("file_system")
def main(args):
dashed_line = "-" * 80
main_log = ""
# to make directories for saving model and log files if not exist
os.makedirs("trained_model/", exist_ok=True)
os.makedirs("log/", exist_ok=True)
# load source domain data for supervised learning
print(dashed_line)
main_log = dashed_line + "\n"
print("Load training data (source domain)...")
main_log += "Load training data (source domain)...\n"
train_data, train_data_log = hierarchical_dataset(args.train_data, args)
train_loader = get_dataloader(args, train_data, args.batch_size, shuffle=True, aug=args.aug)
print(train_data_log, end="")
main_log += train_data_log
# load validation data
print(dashed_line)
main_log += dashed_line + "\n"
print("Load validation data...")
main_log += "Load validation data...\n"
valid_data, valid_data_log = hierarchical_dataset(args.valid_data, args)
valid_loader = get_dataloader(args, valid_data, args.batch_size_val, shuffle=False) # "True" to check training progress with validation function.
print(valid_data_log, end="")
main_log += valid_data_log
print(dashed_line)
main_log += dashed_line + "\n"
print("Init model")
main_log += "Init model\n"
""" Model configuration """
if args.Prediction == "CTC":
converter = CTCLabelConverter(args.character)
else:
converter = AttnLabelConverter(args.character)
args.sos_token_index = converter.dict["[SOS]"]
args.eos_token_index = converter.dict["[EOS]"]
args.num_class = len(converter.character)
# setup model
model = Model(args)
# data parallel for multi-GPU
model = torch.nn.DataParallel(model).to(device)
model.train()
# load pretrained model
if args.saved_model != "":
pretrained = torch.load(args.saved_model)
model.load_state_dict(pretrained)
torch.save(
pretrained,
f"trained_model/{args.model}_supervised.pth",
)
print(f"Load pretrained model from {args.saved_model}")
main_log += "Load pretrained model\n"
# setup loss
if args.Prediction == "CTC":
criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
else:
# ignore [PAD] token
criterion = torch.nn.CrossEntropyLoss(ignore_index=converter.dict["[PAD]"]).to(device)
# filter that only require gradient descent
filtered_parameters = []
params_num = []
for p in filter(lambda p: p.requires_grad, model.parameters()):
filtered_parameters.append(p)
params_num.append(np.prod(p.size()))
print(f"Trainable params num: {sum(params_num)}")
main_log += f"Trainable params num: {sum(params_num)}\n"
""" Final options """
print("------------ Options -------------")
main_log += "------------ Options -------------\n"
opt = vars(args)
for k, v in opt.items():
if str(k) == "character" and len(str(v)) > 500:
print(f"{str(k)}: So many characters to show all: number of characters: {len(str(v))}")
main_log += f"{str(k)}: So many characters to show all: number of characters: {len(str(v))}\n"
else:
print(f"{str(k)}: {str(v)}")
main_log += f"{str(k)}: {str(v)}\n"
print(dashed_line)
main_log += dashed_line + "\n"
print("Start Supervised Learning (Scene Text Recognition - STR)...\n")
main_log += "Start Supervised Learning (Scene Text Recognition - STR)...\n"
# set up optimizer
optimizer = torch.optim.AdamW(filtered_parameters, lr=args.lr, weight_decay=args.weight_decay)
# set up scheduler
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=args.lr,
cycle_momentum=False,
div_factor=20,
final_div_factor=1000,
total_steps=(args.epochs * len(train_loader)),
)
train_loss_avg = Averager()
best_score = float("-inf")
score_descent = 0
# training loop
for epoch in range(args.epochs):
# training part
model.train()
for (images, labels) in tqdm(train_loader):
batch_size = len(labels)
images_tensor = images.to(device)
labels_index, labels_length = converter.encode(
labels, batch_max_length=args.batch_max_length
)
if args.Prediction == "CTC":
preds = model(images_tensor)
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
preds_log_softmax = preds.log_softmax(2).permute(1, 0, 2)
loss = criterion(preds_log_softmax, labels_index, preds_size, labels_length)
else:
preds = model(images_tensor, labels_index[:, :-1]) # align with Attention.forward
target = labels_index[:, 1:] # without [SOS] Symbol
loss = criterion(
preds.view(-1, preds.shape[-1]), target.contiguous().view(-1)
)
model.zero_grad(set_to_none=True)
loss.backward()
torch.nn.utils.clip_grad_norm_(
model.parameters(), args.grad_clip
) # gradient clipping with 5 (Default)
optimizer.step()
train_loss_avg.add(loss)
scheduler.step()
# valiation part
model.eval()
with torch.no_grad():
(
valid_loss,
current_score,
preds,
confidence_score,
labels,
infer_time,
length_of_data,
) = validation(model, criterion, valid_loader, converter, args)
model.train()
if (current_score >= best_score):
score_descent = 0
best_score = current_score
torch.save(
model.state_dict(),
f"trained_model/{args.model}_supervised.pth",
)
else:
score_descent += 1
# log
lr = optimizer.param_groups[0]["lr"]
valid_log = f"\nEpoch {epoch + 1}/{args.epochs}:\n"
valid_log += f"Train_loss: {train_loss_avg.val():0.3f}, Valid_loss: {valid_loss:0.3f}, "
valid_log += f"Current_lr: {lr:0.7f},\n"
valid_log += f"Current_score: {current_score:0.2f}, Best_score: {best_score:0.2f}, "
valid_log += f"Score_descent: {score_descent}\n"
print(valid_log)
main_log += valid_log
main_log += "\n" + dashed_line + "\n"
train_loss_avg.reset()
# free cache
torch.cuda.empty_cache()
# save log
print("Training is done!")
main_log += "Training is done!"
main_log += f"Model is saved at trained_model/{args.model}_supervised.pth"
print(main_log, file= open(f"log/{args.model}_supervised.txt", "w"))
print(f"Model is saved at trained_model/{args.model}_supervised.pth")
print(f"All information is saved at log/{args.model}_supervised.txt")
print(dashed_line)
return
if __name__ == "__main__":
""" Argument """
parser = argparse.ArgumentParser()
config = load_config("config/STR.yaml")
parser.set_defaults(**config)
parser.add_argument(
"--train_data", default="data/train/synth/", help="path to training dataset",
)
parser.add_argument(
"--valid_data", default="data/val/", help="path to validation dataset",
)
parser.add_argument(
"--saved_model", default="", help="path to pretrained model (to continue training)",
)
parser.add_argument(
"--batch_size", type=int, default=128, help="input batch size",
)
parser.add_argument(
"--batch_size_val", type=int, default=512, help="input batch size val",
)
parser.add_argument(
"--epochs", type=int, default=20, help="number of epochs to train for",
)
parser.add_argument(
"--val_interval", type=int, default=1000, help="interval between each validation",
)
parser.add_argument(
"--NED", action="store_true", help="for Normalized edit_distance",
)
""" Model Architecture """
parser.add_argument(
"--model",
type=str,
required=True,
help="CRNN|TRBA",
)
""" Training """
parser.add_argument(
"--aug", action="store_true", default=False, help="augmentation or not",
)
args = parser.parse_args()
if args.model == "CRNN": # CRNN = NVBC
args.Transformation = "None"
args.FeatureExtraction = "VGG"
args.SequenceModeling = "BiLSTM"
args.Prediction = "CTC"
elif args.model == "TRBA": # TRBA
args.Transformation = "TPS"
args.FeatureExtraction = "ResNet"
args.SequenceModeling = "BiLSTM"
args.Prediction = "Attn"
""" Seed and GPU setting """
random.seed(args.manual_seed)
np.random.seed(args.manual_seed)
torch.manual_seed(args.manual_seed)
torch.cuda.manual_seed(args.manual_seed)
cudnn.benchmark = True # it fasten training
cudnn.deterministic = True
if sys.platform == "win32":
args.workers = 0
args.gpu_name = "_".join(torch.cuda.get_device_name().split())
if sys.platform == "linux":
args.CUDA_VISIBLE_DEVICES = os.environ["CUDA_VISIBLE_DEVICES"]
else:
args.CUDA_VISIBLE_DEVICES = 0 # for convenience
command_line_input = " ".join(sys.argv)
print(
f"Command line input: CUDA_VISIBLE_DEVICES={args.CUDA_VISIBLE_DEVICES} python {command_line_input}"
)
main(args)