-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtraverse_attribute_space.py
613 lines (534 loc) · 36.2 KB
/
traverse_attribute_space.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
import argparse
import os
import os.path as osp
import torch
import torch.nn as nn
from torch.utils import data
import numpy as np
import json
import torchvision
from torchvision import transforms
from lib import update_progress, update_stdout
from lib import PathImages, IDComparator, SFDDetector, Hopenet, AUdetector, celeba_attr_predictor
# Action Units
AUs = {
"au_1": "Inner_Brow_Raiser",
"au_2": "Outer_Brow_Raiser",
"au_4": "Brow_Lowerer",
"au_5": "Upper_Lid_Raiser",
"au_6": "Cheek_Raiser",
"au_9": "Nose_Wrinkler",
"au_12": "Lip_Corner_Puller", # (aka "Smile")
"au_15": "Lip_Corner_Depressor",
"au_17": "Chin_Raiser",
"au_20": "Lip_stretcher",
"au_25": "Lips_part",
"au_26": "Jaw_Drop"
}
class ModelArgs:
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
def crop_face(images, idx, bbox, padding=0.0):
"""Crop faces from given images for the given bounding boxes and padding."""
x_min = int((1.0 - padding) * bbox[0])
y_min = int((1.0 - padding) * bbox[1])
x_max = int((1.0 + padding) * bbox[2])
y_max = int((1.0 + padding) * bbox[3])
x_min -= 50
x_max += 50
y_min -= 50
y_max += 30
x_min = max(x_min, 0)
y_min = max(y_min, 0)
x_max = min(images.shape[2], x_max)
y_max = min(images.shape[3], y_max)
x_min = int(x_min)
y_min = int(y_min)
x_max = int(x_max)
y_max = int(y_max)
return images[idx, :, x_min:x_max, y_min:y_max].unsqueeze(0)
def json_exists(json_file):
"""Check if given json file exists and contains a non-empty json object (an empty json object takes 2 bytes)."""
return osp.exists(json_file) and os.stat(json_file).st_size > 2
def main():
"""A script for traversing the attribute space of the generated paths (as calculated by `traverse_latent_space.py`).
Attribute space includes the following:
-- Face bounding box (in terms of face width and height), using SFD [1] face detector
-- Identity score (compare to the original image) using ArcFace [2]
-- Age, race, and gender ("femaleness") using FairFace [3]
-- Pose (in terms of the Euler angles, yaw, pitch, and roll) using Hopenet [4]
-- 12 Actions Units (AUs) from DISFA [5] using [6]
-- 5 CelebA attributes [7] ('Bangs', 'Eyeglasses', 'No_Beard', 'Smiling', 'Young')
Options:
================================================================================================================
-v, --verbose : set verbose mode on
================================================================================================================
--exp : set experiment's model dir, as created by `train.py` and used by `traverse_latent_space.py`.
That is, it should contain the latent traversals for at least one latent codes/images pool,
under the results/ directory.
--pool : set pool of latent codes (should be a subdirectory of experiments/<exp>/results/<gan_type>, as
created by traverse_latent_space.py)
If the following two arguments are specified, evaluation (attribute space traversals) will be performed only for
the given configuration (subdir of experiments/<exp>/results/<gan_type>/<pool>/):
--shift-steps : number of shift steps (per positive/negative path direction)
--eps : shift magnitude
================================================================================================================
--cuda : use CUDA during training (default).
--no-cuda : do NOT use CUDA during training.
================================================================================================================
References:
[1] Zhang, Shifeng, et al. "S3FD: Single shot scale-invariant face detector." Proceedings of the IEEE
international conference on computer vision. 2017.
[2] Deng, Jiankang, et al. "ArcFace: Additive angular margin loss for deep face recognition." Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.
[3] Karkkainen, Kimmo, and Jungseock Joo. "FairFace: Face attribute dataset for balanced race, gender, and age."
arXiv preprint arXiv:1908.04913 (2019).
[4] Doosti, Bardia, et al. "Hope-net: A graph-based model for hand-object pose estimation." Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.
[5] Mavadati, S. Mohammad, et al. "DISFA: A spontaneous facial action intensity database." IEEE Transactions on
Affective Computing 4.2 (2013): 151-160.
[6] Ntinou, Ioanna, et al. "A transfer learning approach to heatmap regression for action unit intensity
estimation." IEEE Transactions on Affective Computing (2021).
[7] Jiang, Yuming, et al. "Talk-to-Edit: Fine-Grained Facial Editing via Dialog." Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021.
"""
parser = argparse.ArgumentParser(description="WarpedGANSpace attribute space traversal script")
parser.add_argument('-v', '--verbose', action='store_true', help="set verbose mode on")
parser.add_argument('--exp', type=str, required=True, help="set experiment's model dir (created by `train.py` and "
"used by `traverse_latent_space.py`.)")
parser.add_argument('--pool', type=str, required=True, help="choose pool of pre-defined latent codes and their "
"latent traversals (should be a subdirectory of "
"experiments/<exp>/results/, as created by "
"traverse_latent_space.py)")
parser.add_argument('--shift-steps', type=int, default=16, help="number of shifts per positive/negative path "
"direction")
parser.add_argument('--eps', type=float, help="shift magnitude")
parser.add_argument('--cuda', dest='cuda', action='store_true', help="use CUDA during training")
parser.add_argument('--no-cuda', dest='cuda', action='store_false', help="do NOT use CUDA during training")
parser.set_defaults(cuda=True)
# Parse given arguments
args = parser.parse_args()
# Check given experiment's directory
latent_traversal_dir = osp.join(args.exp, 'results', args.pool)
if not osp.isdir(args.exp):
raise NotADirectoryError("Error: invalid experiment's directory: {}".format(args.exp))
else:
# Get gan_type
args_json_file = osp.join(args.exp, 'args.json')
if not osp.isfile(args_json_file):
raise FileNotFoundError("File not found: {}".format(args_json_file))
args_json = ModelArgs(**json.load(open(args_json_file)))
gan_type = args_json.__dict__["gan_type"]
# Check results directory
if not osp.isdir(latent_traversal_dir):
raise NotADirectoryError("Error: pool directory {} not found under {}".format(
args.pool, osp.join(args.exp, 'results')))
# Get shift magnitude steps / total length sub-directory(ies) under the given latent traversals directory
if (args.shift_steps is None) and (args.eps is None):
latent_space_traversal_configs = [dI for dI in os.listdir(latent_traversal_dir) if
osp.isdir(os.path.join(latent_traversal_dir, dI))]
else:
latent_space_traversal_configs = ['{}_{}_{}'.format(2 * args.shift_steps,
args.eps,
round(2 * args.shift_steps * args.eps, 3))]
if args.verbose:
print("#. Calculate attribute traversals in {}".format(latent_traversal_dir))
print(" \\__.Latent space traversal configs: {}".format(latent_space_traversal_configs))
# Use CUDA boolean
use_cuda = args.cuda and torch.cuda.is_available()
####################################################################################################################
## ##
## [ Pre-trained Models ] ##
## ##
####################################################################################################################
# Define SFD face detector model
face_detector = SFDDetector(path_to_detector='models/pretrained/sfd/s3fd-619a316812.pth',
device="cuda" if use_cuda else "cpu")
face_detector_trans = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(256)])
# Define ID comparator based on ArcFace
id_comp = IDComparator()
id_comp.eval()
if use_cuda:
id_comp.cuda()
# Define FairFace model for predicting gender, age, and race
fairface = torchvision.models.resnet34(pretrained=True)
fairface.fc = nn.Linear(fairface.fc.in_features, 18)
fairface.load_state_dict(torch.load('models/pretrained/fairface/fairface_alldata_4race_20191111.pt'))
fairface.eval()
if use_cuda:
fairface.cuda()
# Define Hopenet pose estimator
hopenet = Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
hopenet.load_state_dict(torch.load('models/pretrained/hopenet/hopenet_alpha2.pkl'))
hopenet.eval()
if use_cuda:
hopenet.cuda()
hopenet_softmax = nn.Softmax(dim=1)
if use_cuda:
hopenet_softmax.cuda()
idx_tensor = [idx for idx in range(66)]
idx_tensor = torch.FloatTensor(idx_tensor)
if use_cuda:
idx_tensor = idx_tensor.cuda()
# Define face transformation required by Hopenet and FairFace
face_trans_hope_fair = transforms.Compose([transforms.Resize(224),
transforms.CenterCrop(224),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
# Define AU detector
AU_detector = AUdetector(au_model_path='models/pretrained/au_detector/disfa_adaptation_f0.pth', use_cuda=use_cuda)
# Define face transformation required by AU detector
face_trans_au = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(256)])
# Define CelebA attributes predictor
celeba_5 = celeba_attr_predictor(attr_file='lib/evaluation/celeba_attributes/attributes_5.json',
pretrained='models/pretrained/celeba_attributes/eval_predictor.pth.tar').eval()
celeba_5_trans = transforms.Compose([transforms.Resize(224),
transforms.CenterCrop(224),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
celeba_5_softmax = nn.Softmax(dim=1)
if use_cuda:
celeba_5.cuda()
####################################################################################################################
## ##
## [ Attribute Space Traversals ] ##
## ##
####################################################################################################################
for l_config in latent_space_traversal_configs:
if args.verbose:
print(" \\__.Latent space traversal config: {}".format(l_config))
# Navigate all hashes directories (i.e., sample latent codes)
hashes_dir = osp.join(latent_traversal_dir, '{}_{}_{}'.format(2 * args.shift_steps, args.eps,
round(2 * args.shift_steps * args.eps, 3)))
hashes = [dI for dI in os.listdir(hashes_dir)
if osp.isdir(os.path.join(hashes_dir, dI)) and dI not in ('paths_gifs', 'validation_results')]
# For each hash (i.e., for each latent code) and for all paths (warping functions), find the attributes
# predictions across all image sequences
hash_cnt = 0
for h in hashes:
hash_cnt += 1
if args.verbose:
print(" \\__.hash: {} [{}/{}]".format(h, hash_cnt, len(hashes)))
h_dir = osp.join(hashes_dir, h)
# Load path latent codes and get number of paths and points per path
paths_latent_codes = torch.load(osp.join(h_dir, 'paths_latent_codes.pt'),
map_location=lambda storage, loc: storage)
num_of_paths = paths_latent_codes.size()[0]
num_of_img_per_path = paths_latent_codes.size()[1]
path_images_dir = osp.join(h_dir, 'paths_images')
# Define json dictionaries for the various evaluation predictions
face_bbox_dict = dict()
id_dict = dict()
gender_dict = dict()
age_dict = dict()
race_dict = dict()
pose_dict = dict()
aus_dict = dict()
celeba_bangs_dict = dict()
celeba_eyeglasses_dict = dict()
celeba_beard_dict = dict()
celeba_smiling_dict = dict()
celeba_age_dict = dict()
# Define numpy arrays for the various evaluation predictions
face_width_np = np.zeros((num_of_paths, num_of_img_per_path))
face_height_np = np.zeros((num_of_paths, num_of_img_per_path))
id_np = np.zeros((num_of_paths, num_of_img_per_path))
gender_np = np.zeros((num_of_paths, num_of_img_per_path))
age_np = np.zeros((num_of_paths, num_of_img_per_path))
race_np = np.zeros((num_of_paths, num_of_img_per_path))
yaw_np = np.zeros((num_of_paths, num_of_img_per_path))
pitch_np = np.zeros((num_of_paths, num_of_img_per_path))
roll_np = np.zeros((num_of_paths, num_of_img_per_path))
aus_np = np.zeros((len(AUs), num_of_paths, num_of_img_per_path))
celeba_bangs_np = np.zeros((num_of_paths, num_of_img_per_path))
celeba_eyeglasses_np = np.zeros((num_of_paths, num_of_img_per_path))
celeba_beard_np = np.zeros((num_of_paths, num_of_img_per_path))
celeba_smiling_np = np.zeros((num_of_paths, num_of_img_per_path))
celeba_age_np = np.zeros((num_of_paths, num_of_img_per_path))
for d in range(num_of_paths):
if args.verbose:
update_progress(" \\__path: {:03d}/{:03d} ".format(d + 1, num_of_paths),
num_of_paths, d + 1)
########################################################################################################
## ##
## [ Image Data Loader ] ##
## ##
########################################################################################################
data_loader = data.DataLoader(dataset=PathImages(root_path=osp.join(path_images_dir,
'path_{:03d}'.format(d))),
batch_size=num_of_img_per_path,
num_workers=0,
shuffle=False,
pin_memory=use_cuda)
path_images_tensor = next(iter(data_loader))
if use_cuda:
path_images_tensor = path_images_tensor.cuda()
########################################################################################################
########################################################################################################
## ##
## [ Face Detection ] ##
## ##
########################################################################################################
# Detect faces in path images (B x 3 x 256 x 256)
with torch.no_grad():
detected_faces, _, _ = face_detector.detect_from_batch(face_detector_trans(path_images_tensor))
########################################################################################################
########################################################################################################
## ##
## [ Face Bounding Boxes ] ##
## ##
########################################################################################################
face_bbox_list = []
face_w = []
face_h = []
for t in range(len(detected_faces)):
if len(detected_faces[t]) > 0:
face_bbox = detected_faces[t][0].tolist()
face_bbox_list.append(face_bbox)
face_w.append((face_bbox[2] - face_bbox[0]) / 256.0)
face_h.append((face_bbox[3] - face_bbox[1]) / 256.0)
else:
face_w.append(256.0)
face_h.append(256.0)
face_bbox_dict.update({d: face_bbox_list})
face_width_np[d] = np.array(face_w)
face_height_np[d] = np.array(face_h)
########################################################################################################
########################################################################################################
## ##
## [ CelebA Attributes ] ##
## ##
########################################################################################################
# The following are based on [7] (see above): ##
# -- Bangs : Proportion of the exposed forehead (100%, 80%, 60%, 40%, 20%, and 0%). ##
# -- Eyeglasses : Thickness of glasses frames and type of glasses (ordinary / sunglasses). ##
# -- Beard : Thickness of the beard. ##
# -- Smiling : Ratio of exposed teeth and open mouth. ##
# -- Age : below 15, 15-30, 30-40, 40-50, 50-60, and above 60. ##
########################################################################################################
if gan_type == 'StyleGAN2':
# According to [7], transform image to range [-1, 1] before mean-std normalization
with torch.no_grad():
attribute_predictions = celeba_5(
celeba_5_trans(path_images_tensor.div(255.0).mul(2.0).add(-1.0)))
else:
# According to [7], transform image to range [0, 1] before mean-std normalization
path_images_tensor_ = path_images_tensor.clone()
path_images_tensor_ = (path_images_tensor_ - path_images_tensor_.min()) / \
(path_images_tensor_.max() - path_images_tensor_.min())
with torch.no_grad():
attribute_predictions = celeba_5(celeba_5_trans(path_images_tensor_))
for attr, attr_predictions in attribute_predictions.items():
attr_scores = celeba_5_softmax(attr_predictions).cpu().numpy()
scores = np.max(attr_scores, axis=1)
labels = np.argmax(attr_scores, axis=1)
final_scores = (labels + scores) / 6.0
if attr == 'Bangs':
celeba_bangs_np[d] = final_scores
celeba_bangs_dict.update({d: final_scores.tolist()})
elif attr == 'Eyeglasses':
celeba_eyeglasses_np[d] = final_scores
celeba_eyeglasses_dict.update({d: final_scores.tolist()})
elif attr == 'No_Beard':
celeba_beard_np[d] = final_scores
celeba_beard_dict.update({d: final_scores.tolist()})
elif attr == 'Smiling':
celeba_smiling_np[d] = final_scores
celeba_smiling_dict.update({d: final_scores.tolist()})
elif attr == 'Young':
celeba_age_np[d] = final_scores
celeba_age_dict.update({d: final_scores.tolist()})
########################################################################################################
########################################################################################################
## ##
## [ ID ] ##
## ##
########################################################################################################
# TODO: Use face detection to crop faces (instead of the heuristic followed in `arcface.py`, i.e.,
# x = x[:, :, 35:223, 32:220])
path_images_tensor_resized = face_detector_trans(path_images_tensor)
original_img = path_images_tensor_resized[num_of_img_per_path // 2, :].unsqueeze(0)
id_scores = [id_comp(original_img.div(255.0).mul(2.0).add(-1.0),
original_img.div(255.0).mul(2.0).add(-1.0)).item()]
for t in range((num_of_img_per_path - 1) // 2):
transformed_img = path_images_tensor_resized[num_of_img_per_path // 2 + t + 1, :].unsqueeze(0)
with torch.no_grad():
id_sim = id_comp(original_img.div(255.0).mul(2.0).add(-1.0),
transformed_img.div(255.0).mul(2.0).add(-1.0))
id_scores.append(id_sim.item())
for t in range((num_of_img_per_path - 1) // 2):
transformed_img = path_images_tensor_resized[num_of_img_per_path // 2 - t - 1, :].unsqueeze(0)
with torch.no_grad():
id_sim = id_comp(original_img.div(255.0).mul(2.0).add(-1.0),
transformed_img.div(255.0).mul(2.0).add(-1.0))
id_scores = [id_sim.item()] + id_scores
# Update `id_dict` with the id scores of the current path
id_dict.update({d: id_scores})
id_np[d] = np.array(id_scores)
########################################################################################################
########################################################################################################
## ##
## [ Gender / Age / Race ] ##
## ##
########################################################################################################
cropped_faces = torch.zeros(len(detected_faces), 3, 224, 224)
for t in range(len(detected_faces)):
cropped_faces[t] = face_trans_hope_fair(crop_face(images=face_detector_trans(path_images_tensor),
idx=t,
bbox=detected_faces[t][0][:-1]
if len(detected_faces[t]) > 0
else [0, 0, 256, 256],
padding=0.25).div(255.0))
if use_cuda:
cropped_faces = cropped_faces.cuda()
with torch.no_grad():
outputs = fairface(cropped_faces).cpu().detach().numpy()
# Gender predictions
gender_outputs = outputs[:, 7:9]
gender_scores = np.exp(gender_outputs) / np.sum(np.exp(gender_outputs), axis=1, keepdims=True)
femaleness_scores = gender_scores[:, 1].tolist()
gender_dict.update({d: femaleness_scores})
gender_np[d] = np.array(femaleness_scores)
# Age predictions
age_outputs = outputs[:, 9:18]
age_scores = np.exp(age_outputs) / np.sum(np.exp(age_outputs), axis=1, keepdims=True)
age_predictions = np.argmax(age_scores, axis=1)
# Assign continuous scores
age_predictions = (age_predictions + np.max(age_scores, axis=1)) / 9.0
age_dict.update({d: age_predictions.tolist()})
age_np[d] = age_predictions
# Race Prediction
# 0: 'white'
# 1: 'East Asian'
# 2: 'Latino_Hispanic'
# 3: 'Southeast Asian'
# 4: 'Indian'
# 5: 'Middle Eastern'
# 6: 'Black'
race_outputs = outputs[:, :7]
race_scores = np.exp(race_outputs) / np.sum(np.exp(race_outputs), axis=1, keepdims=True)
race_predictions = np.argmax(race_scores, axis=1)
# Assign continuous scores
race_predictions = (race_predictions + np.max(race_scores, axis=1)) / 7.0
race_dict.update({d: race_predictions.tolist()})
race_np[d] = race_predictions
########################################################################################################
########################################################################################################
## ##
## [ Pose ] ##
## ##
########################################################################################################
cropped_faces = torch.zeros(len(detected_faces), 3, 224, 224)
for t in range(len(detected_faces)):
cropped_faces[t] = face_trans_hope_fair(crop_face(images=face_detector_trans(path_images_tensor),
idx=t,
bbox=detected_faces[t][0][:-1]
if len(detected_faces[t]) > 0
else [0, 0, 256, 256]).div(255.0))
if use_cuda:
cropped_faces = cropped_faces.cuda()
# Predict yaw, pitch, roll in degrees
with torch.no_grad():
yaw, pitch, roll = hopenet(cropped_faces)
yaw_predicted = hopenet_softmax(yaw)
pitch_predicted = hopenet_softmax(pitch)
roll_predicted = hopenet_softmax(roll)
yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99
pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99
roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99
# Save yaw, pitch, roll lists in json dict (degrees)
yaw_list_deg = yaw_predicted.cpu().detach().numpy().tolist()
pitch_list_deg = pitch_predicted.cpu().detach().numpy().tolist()
roll_list_deg = roll_predicted.cpu().detach().numpy().tolist()
pose_dict.update({d: [yaw_list_deg, pitch_list_deg, roll_list_deg]})
# Save yaw, pitch, roll numpy arrays (radians)
yaw_np[d] = np.array(yaw_list_deg) * np.pi / 180
pitch_np[d] = np.array(pitch_list_deg) * np.pi / 180
roll_np[d] = np.array(roll_list_deg) * np.pi / 180
########################################################################################################
########################################################################################################
## ##
## [ Action Units ] ##
## ##
########################################################################################################
cropped_faces = torch.zeros(len(detected_faces), 3, 256, 256)
for t in range(len(detected_faces)):
cropped_faces[t] = face_trans_au(crop_face(images=face_detector_trans(path_images_tensor),
idx=t,
bbox=detected_faces[t][0][:-1]
if len(detected_faces[t]) > 0
else [0, 0, 256, 256]))
if use_cuda:
cropped_faces = cropped_faces.cuda()
# Predict AUs
au_intensities = AU_detector.detect_AU(cropped_faces).detach().cpu().numpy().transpose()
# Save in numpy array and update json dict
aus_list = []
for t in range(len(AUs)):
au_scores = au_intensities[t].tolist()
aus_list.append(au_scores)
aus_np[t, d, :] = np.array(au_scores)
aus_dict.update({d: aus_list})
########################################################################################################
# Empty CUDA cache
if use_cuda:
torch.cuda.empty_cache()
# --- Create directory for storing evaluation results in json format
json_files_dir = osp.join(h_dir, 'eval_json')
os.makedirs(json_files_dir, exist_ok=True)
# --- Create directory for storing evaluation results in numpy arrays
np_files_dir = osp.join(h_dir, 'eval_np')
os.makedirs(np_files_dir, exist_ok=True)
# --- Save json and np files
# Save `face_bbox_dict` in json format, `face_width_np` and `face_height_np` in numpy array format
with open(osp.join(json_files_dir, 'face_bbox.json'), 'w') as out:
json.dump(face_bbox_dict, out)
np.save(osp.join(np_files_dir, 'face_width.npy'), face_width_np)
np.save(osp.join(np_files_dir, 'face_height.npy'), face_height_np)
# Save `id_dict` in json format and `id_np` in numpy array format
with open(osp.join(json_files_dir, 'identity.json'), 'w') as out:
json.dump(id_dict, out)
np.save(osp.join(np_files_dir, 'identity.npy'), id_np)
# Save `age_dict` in json format and `age_np` in numpy array format
with open(osp.join(json_files_dir, 'age.json'), 'w') as out:
json.dump(age_dict, out)
np.save(osp.join(np_files_dir, 'age.npy'), age_np)
# Save `race_dict` in json format and `race_np` in numpy array format
with open(osp.join(json_files_dir, 'race.json'), 'w') as out:
json.dump(race_dict, out)
np.save(osp.join(np_files_dir, 'race.npy'), race_np)
# Save `gender_dict` in json format and `gender_np` in numpy array format
with open(osp.join(json_files_dir, 'gender.json'), 'w') as out:
json.dump(gender_dict, out)
np.save(osp.join(np_files_dir, 'gender.npy'), gender_np)
# Save `pose_dict` in json format and `yaw_np`, `pitch_np`, and `roll_np` in numpy array format
with open(osp.join(json_files_dir, 'pose.json'), 'w') as out:
json.dump(pose_dict, out)
np.save(osp.join(np_files_dir, 'yaw.npy'), yaw_np)
np.save(osp.join(np_files_dir, 'pitch.npy'), pitch_np)
np.save(osp.join(np_files_dir, 'roll.npy'), roll_np)
# Save `aus_dict` in json format and `aus_np` in numpy array format
with open(osp.join(json_files_dir, 'au.json'), 'w') as out:
json.dump(aus_dict, out)
for t, k in enumerate(AUs.keys()):
np.save(osp.join(np_files_dir, '{}_{}.npy'.format(k, AUs[k])), aus_np[t, :])
# Save CelebA attributes ("Bangs", "Eyeglasses", "Beard", "Smiling", "Age") in json and numpy array format
with open(osp.join(json_files_dir, 'celeba_bangs.json'), 'w') as out:
json.dump(celeba_bangs_dict, out)
np.save(osp.join(np_files_dir, 'celeba_bangs.npy'), celeba_bangs_np)
with open(osp.join(json_files_dir, 'celeba_eyeglasses.json'), 'w') as out:
json.dump(celeba_eyeglasses_dict, out)
np.save(osp.join(np_files_dir, 'celeba_eyeglasses.npy'), celeba_eyeglasses_np)
with open(osp.join(json_files_dir, 'celeba_beard.json'), 'w') as out:
json.dump(celeba_beard_dict, out)
np.save(osp.join(np_files_dir, 'celeba_beard.npy'), celeba_beard_np)
with open(osp.join(json_files_dir, 'celeba_smiling.json'), 'w') as out:
json.dump(celeba_smiling_dict, out)
np.save(osp.join(np_files_dir, 'celeba_smiling.npy'), celeba_smiling_np)
with open(osp.join(json_files_dir, 'celeba_age.json'), 'w') as out:
json.dump(celeba_age_dict, out)
np.save(osp.join(np_files_dir, 'celeba_age.npy'), celeba_age_np)
if args.verbose:
update_stdout(1)
print()
if __name__ == '__main__':
main()