-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtraverse_latent_space_vae.py
488 lines (418 loc) · 23.6 KB
/
traverse_latent_space_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import argparse
import os
import os.path as osp
import torch
from torch import nn
from PIL import Image, ImageDraw
import json
from torchvision.transforms import ToPILImage
from lib import *
import numpy as np
from vae import ConvVAE
def text_save(filename, data):
file = open(filename,'a')
for i in range(len(data)):
s = str(data[i]).replace('[','').replace(']','')
s = s.replace("'",'').replace(',','') +'\n'
file.write(s)
file.close()
class DataParallelPassthrough(nn.DataParallel):
def __getattr__(self, name):
try:
return super(DataParallelPassthrough, self).__getattr__(name)
except AttributeError:
return getattr(self.module, name)
class ModelArgs:
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
def tensor2image(tensor, img_size=None, adaptive=False):
# Squeeze tensor image
tensor = tensor.squeeze(dim=0)
if adaptive:
tensor = (tensor - tensor.min()) / (tensor.max() - tensor.min())
if img_size:
return ToPILImage()((255 * tensor.cpu().detach()).to(torch.uint8)).resize((img_size, img_size))
else:
return ToPILImage()((255 * tensor.cpu().detach()).to(torch.uint8))
else:
tensor = (tensor + 1) / 2
tensor.clamp(0, 1)
if img_size:
return ToPILImage()((255 * tensor.cpu().detach()).to(torch.uint8)).resize((img_size, img_size))
else:
return ToPILImage()((255 * tensor.cpu().detach()).to(torch.uint8))
def one_hot(dims, value, idx):
vec = torch.zeros(dims)
vec[idx] = value
return vec
def get_concat_h(img_file_orig,
shifted_img_file,
size,
img_id,
s,
shift_steps,
path_id,
draw_header=False,
draw_progress_bar=True):
img_orig = Image.open(img_file_orig).resize((size, size))
img_orig_w = img_orig.width
img_orig_h = img_orig.height
img_shifted = Image.open(shifted_img_file).resize((size, size))
img_shifted_w = img_shifted.width
dst = Image.new('RGB', (img_orig_w + img_shifted_w, img_orig_h))
dst.paste(img_orig, (0, 0))
dst.paste(img_shifted, (img_orig_w, 0))
# Add header with img_id and path_id
if draw_header:
draw = ImageDraw.Draw(dst)
offset_w = 6
offset_h = 6
t_w = 270
t_h = 13
draw.rectangle(xy=[(offset_w, offset_h), (offset_w + t_w, offset_h + t_h)], fill=(0, 0, 0))
draw.text((offset_w + 2, offset_h + 2), "{}/{:03d}".format(img_id, path_id), fill=(255, 255, 255))
# Draw progress bar
if draw_progress_bar:
draw = ImageDraw.Draw(dst)
bar_h = 7
bar_color = (252, 186, 3)
draw.rectangle(xy=[(size, size - bar_h), ((1 + s / shift_steps) * size, size)], fill=bar_color)
return dst
def main():
parser = argparse.ArgumentParser(description="Laten flow evolution script")
parser.add_argument('-v', '--verbose', action='store_true', help="set verbose mode on")
# ================================================================================================================ #
parser.add_argument('--exp', type=str, required=True, help="set experiment's model dir (created by `train.py`)")
parser.add_argument('--pool', type=str, required=True, help="directory of pre-defined pool of latent codes"
"(created by `sample_gan.py`)")
parser.add_argument('--shift-steps', type=int, default=16, help="set number of shifts per positive/negative path "
"direction")
parser.add_argument('--eps', type=float, default=1, help="set shift step magnitude")
parser.add_argument('--shift-leap', type=int, default=1,
help="set path shift leap (after how many steps to generate images)")
parser.add_argument('--batch-size', type=int, help="set generator batch size (if not set, use the total number of "
"images per path)")
parser.add_argument('--img-size', type=int, help="set size of saved generated images (if not set, use the output "
"size of the respective GAN generator)")
parser.add_argument('--img-quality', type=int, default=75, help="set JPEG image quality")
parser.add_argument('--gif', action='store_true', help="Create GIF traversals")
parser.add_argument('--gif-size', type=int, default=256, help="set gif resolution")
parser.add_argument('--gif-fps', type=int, default=30, help="set gif frame rate")
parser.add_argument("--vae_scratch", type=bool, default=False)
# ================================================================================================================ #
parser.add_argument('--cuda', dest='cuda', action='store_true', help="use CUDA during training")
parser.add_argument('--no-cuda', dest='cuda', action='store_false', help="do NOT use CUDA during training")
parser.set_defaults(cuda=True)
# ================================================================================================================ #
# Parse given arguments
args = parser.parse_args()
# Check structure of `args.exp`
if not osp.isdir(args.exp):
raise NotADirectoryError("Invalid given directory: {}".format(args.exp))
# -- args.json file (pre-trained model arguments)
args_json_file = osp.join(args.exp, 'args.json')
if not osp.isfile(args_json_file):
raise FileNotFoundError("File not found: {}".format(args_json_file))
args_json = ModelArgs(**json.load(open(args_json_file)))
gan_type = args_json.__dict__["gan_type"]
# -- models directory (support sets and reconstructor, final or checkpoint files)
models_dir = osp.join(args.exp, 'models')
if not osp.isdir(models_dir):
raise NotADirectoryError("Invalid models directory: {}".format(models_dir))
# ---- Get all files of models directory
models_dir_files = [f for f in os.listdir(models_dir) if osp.isfile(osp.join(models_dir, f))]
# ---- Check for PDE support sets file (final or checkpoint)
support_sets_model = osp.join(models_dir, 'checkpoint.pt')
if not osp.isfile(support_sets_model):
support_sets_checkpoint_files = []
for f in models_dir_files:
if 'support_sets-' in f:
support_sets_checkpoint_files.append(f)
support_sets_checkpoint_files.sort()
print(models_dir,support_sets_checkpoint_files)
support_sets_model = osp.join(models_dir, support_sets_checkpoint_files[-1])
# Check given pool directory
pool = osp.join('experiments', 'latent_codes')
pool = osp.join(pool, gan_type, args.pool)
if not osp.isdir(pool):
raise NotADirectoryError("Invalid pool directory: {} -- Please run sample_gan.py to create it.".format(pool))
# CUDA
use_cuda = False
multi_gpu = False
if torch.cuda.is_available():
if args.cuda:
use_cuda = True
torch.set_default_tensor_type('torch.cuda.FloatTensor')
if torch.cuda.device_count() > 1:
multi_gpu = True
else:
print("*** WARNING ***: It looks like you have a CUDA device, but aren't using CUDA.\n"
" Run with --cuda for optimal training speed.")
torch.set_default_tensor_type('torch.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
# Build VAE load with pre-trained weights
if args.shapes3d == True:
G = ConvVAE(num_channel=3, latent_size=15 * 15 + 1, img_size=64)
else:
G = ConvVAE2(num_channel=3, latent_size=18 * 18, img_size=128)
# Build PDE flows S
if args.verbose:
print("#. Build PDE flows S...")
S = WavePDE(num_support_sets=args_json.__dict__["num_support_sets"],
num_support_timesteps=args_json.__dict__["num_support_timesteps"],
support_vectors_dim=G.latent_size)
if args.verbose:
print(" \\__Pre-trained weights: {}".format(support_sets_model))
S.load_state_dict(torch.load(support_sets_model, map_location=lambda storage, loc: storage)['support_sets'])
if args.vae_scratch:
G = ConvVAE(num_channel=3, latent_size=15 * 15 + 1, img_size=64)
G.load_state_dict(torch.load(support_sets_model, map_location=lambda storage, loc: storage)['vae'])
if args.verbose:
print(" \\__Set to evaluation mode")
S.eval()
# Upload support sets model to GPU
if use_cuda:
S = S.cuda()
# Set number of generative paths
num_gen_paths = S.num_support_sets
# Create output dir for generated images
out_dir = osp.join(args.exp, 'results', args.pool,
'{}_{}_{}'.format(2 * args.shift_steps, args.eps, round(2 * args.shift_steps * args.eps, 3)))
os.makedirs(out_dir, exist_ok=True)
# Set default batch size
if args.batch_size is None:
args.batch_size = 2 * args.shift_steps + 1
## ============================================================================================================== ##
## ##
## [Latent Codes Pool] ##
## ##
## ============================================================================================================== ##
# Get latent codes from the given pool
if args.verbose:
print("#. Use latent codes from pool {}...".format(args.pool))
latent_codes_dirs = [dI for dI in os.listdir(pool) if os.path.isdir(os.path.join(pool, dI))]
latent_codes_dirs.sort()
latent_codes = []
for subdir in latent_codes_dirs:
latent_codes.append(torch.load(osp.join(pool, subdir, 'latent_code.pt'),
map_location=lambda storage, loc: storage))
zs = torch.cat(latent_codes)
num_of_latent_codes = zs.size()[0]
if use_cuda:
zs = zs.cuda()
## ============================================================================================================== ##
## ##
## [Latent space traversal] ##
## ##
## ============================================================================================================== ##
if args.verbose:
print("#. Traverse latent space...")
print(" \\__Experiment : {}".format(osp.basename(osp.abspath(args.exp))))
print(" \\__Shift magnitude : {}".format(args.eps))
print(" \\__Shift steps : {}".format(2 * args.shift_steps))
print(" \\__Traversal length : {}".format(round(2 * args.shift_steps * args.eps, 3)))
print(" \\__Save results at : {}".format(out_dir))
# Iterate over given latent codes
for i in range(num_of_latent_codes):
# Un-squeeze current latent code in shape [1, dim] and create hash code for it
z_ = zs[i, :].unsqueeze(0)
latent_code_hash = latent_codes_dirs[i]
if args.verbose:
update_progress(" \\__.Latent code hash: {} [{:03d}/{:03d}] ".format(latent_code_hash,
i+1,
num_of_latent_codes),
num_of_latent_codes, i)
# Create directory for current latent code
latent_code_dir = osp.join(out_dir, '{}'.format(latent_code_hash))
os.makedirs(latent_code_dir, exist_ok=True)
# Create directory for storing path images
transformed_images_root_dir = osp.join(latent_code_dir, 'paths_images')
os.makedirs(transformed_images_root_dir, exist_ok=True)
# Keep all latent paths the current latent code (sample)
paths_latent_codes = []
## ========================================================================================================== ##
## ##
## [ Path Traversal ] ##
## ##
## ========================================================================================================== ##
# Iterate over (interpretable) directions
for dim in range(num_gen_paths):
if args.verbose:
print()
update_progress(" \\__path: {:03d}/{:03d} ".format(dim + 1, num_gen_paths), num_gen_paths, dim + 1)
# Create shifted latent codes (for the given latent code z) and generate transformed images
transformed_images = []
# Current path's latent codes and shifts lists
current_path_latent_codes = [G.get_w(z_) if args_json.__dict__["shift_in_w_space"] else z_]
current_path_latent_shifts = [torch.zeros_like(z_).cuda() if use_cuda else torch.zeros_like(z_)]
## ====================================================================================================== ##
## ##
## [ Traverse through current path (positive/negative directions) ] ##
## ##
## ====================================================================================================== ##
# == Positive direction ==
if args_json.__dict__["shift_in_w_space"]:
z = z_.clone().requires_grad_()
w = G.get_w(z)
else:
z = z_.clone().requires_grad_()
cnt = 0
print("K index:",dim)
half_steps = args.shift_steps // 2
# == Negative direction ==
for step in range(0,half_steps):
cnt += 1
energy, shift, _ = S.inference(dim, w if args_json.__dict__["shift_in_w_space"] else z,
step * torch.ones(1, 1, requires_grad=True),G.decoder)
if shift.dim()==1:
shift = shift.unsqueeze(0)
#shift = shift.unsqueeze(0)
# Store latent codes and shifts
if cnt == args.shift_leap:
current_path_latent_shifts.append(-args.eps*shift)
current_path_latent_codes.append(w if args_json.__dict__["shift_in_w_space"] else z)
cnt = 0
# Update z/w
if args_json.__dict__["shift_in_w_space"]:
w = w - args.eps * shift
else:
z = z - args.eps * shift
current_path_latent_shifts.reverse()
current_path_latent_codes.reverse()
# == Positive direction ==
if args_json.__dict__["shift_in_w_space"]:
z = z_.clone().requires_grad_()
w = G.get_w(z)
else:
z = z_.clone().requires_grad_()
cnt = 0
for step in range(0,half_steps):
cnt += 1
energy, shift, _ = S.inference(dim, w if args_json.__dict__["shift_in_w_space"] else z,
step * torch.ones(1, 1, requires_grad=True),G.decoder)
if shift.dim()==1:
shift = shift.unsqueeze(0)
#shift = shift.unsqueeze(0)
if step == 0:
energy_wave = np.array(energy.view(-1).cpu().detach().numpy())
shift_wave = np.array(z.view(-1).cpu().detach().numpy())
shift_wave = np.append(shift_wave, np.array(shift.view(-1).cpu().detach().numpy()))
else:
energy_wave = np.append(energy_wave, np.array(energy.view(-1).cpu().detach().numpy()))
shift_wave = np.append(shift_wave, np.array(shift.view(-1).cpu().detach().numpy()))
# Store latent codes and shifts
if cnt == args.shift_leap:
current_path_latent_shifts.append(args.eps*shift)
current_path_latent_codes.append(w if args_json.__dict__["shift_in_w_space"] else z)
cnt = 0
# Update z/w
if args_json.__dict__["shift_in_w_space"]:
w = w + args.eps * shift
else:
z = z + args.eps * shift
text_save(osp.join(transformed_images_root_dir, 'shift_{:03d}.txt'.format(dim)), shift_wave)
text_save(osp.join(transformed_images_root_dir, 'wave_{:03d}.txt'.format(dim)), energy_wave)
if len(current_path_latent_codes_batches) != len(current_path_latent_shifts_batches):
raise AssertionError()
else:
num_batches = len(current_path_latent_codes_batches)
transformed_img = []
for t in range(num_batches):
with torch.no_grad():
print(current_path_latent_shifts_batches[t]+current_path_latent_shifts_batches[t])
img = G.inference(current_path_latent_codes_batches[t]+current_path_latent_shifts_batches[t])
transformed_img.append(img)
transformed_img = torch.cat(transformed_img)
# Convert tensors (transformed images) into PIL images
for t in range(transformed_img.size()[0]):
transformed_images.append(tensor2image(transformed_img[t, :].cpu(),
img_size=args.img_size,
adaptive=True))
# Save all images in `transformed_images` list under `transformed_images_root_dir/<path_<dim>/`
transformed_images_dir = osp.join(transformed_images_root_dir, 'path_{:03d}'.format(dim))
os.makedirs(transformed_images_dir, exist_ok=True)
for t in range(len(transformed_images)):
transformed_images[t].save(osp.join(transformed_images_dir, '{:06d}.jpg'.format(t)),
"JPEG", quality=args.img_quality, optimize=True, progressive=True)
# Save original image
if (t == len(transformed_images) // 2) and (dim == 0):
transformed_images[t].save(osp.join(latent_code_dir, 'original_image.jpg'),
"JPEG", quality=95, optimize=True, progressive=True)
# Append latent paths
paths_latent_codes.append(current_path_latent_codes.unsqueeze(0))
if args.verbose:
update_stdout(1)
# ============================================================================================================ #
# Save all latent paths and shifts for the current latent code (sample) in a tensor of size:
# paths_latent_codes : torch.Size([num_gen_paths, 2 * args.shift_steps + 1, G.dim_z])
torch.save(torch.cat(paths_latent_codes), osp.join(latent_code_dir, 'paths_latent_codes.pt'))
if args.verbose:
update_stdout(1)
print()
print()
# Collate traversal GIFs
if args.gif:
# Build results file structure
structure = dict()
generated_img_subdirs = [dI for dI in os.listdir(out_dir) if os.path.isdir(osp.join(out_dir, dI)) and
dI not in ('paths_gifs', 'validation_results')]
generated_img_subdirs.sort()
for img_id in generated_img_subdirs:
structure.update({img_id: {}})
path_images_dir = osp.join(out_dir, '{}'.format(img_id), 'paths_images')
path_images_subdirs = [dI for dI in os.listdir(path_images_dir)
if os.path.isdir(os.path.join(path_images_dir, dI))]
path_images_subdirs.sort()
for item in path_images_subdirs:
structure[img_id].update({item: [dI for dI in os.listdir(osp.join(path_images_dir, item))
if osp.isfile(os.path.join(path_images_dir, item, dI))]})
# Create directory for storing traversal GIFs
os.makedirs(osp.join(out_dir, 'paths_gifs'), exist_ok=True)
# For each interpretable path (warping function), collect the generated image sequences for each original latent
# code and collate them into a GIF file
print("#. Collate GIFs...")
num_of_frames = list()
for dim in range(num_gen_paths):
if args.verbose:
update_progress(" \\__path: {:03d}/{:03d} ".format(dim + 1, num_gen_paths), num_gen_paths, dim + 1)
gif_frames = []
for img_id in structure.keys():
original_img_file = osp.join(out_dir, '{}'.format(img_id), 'original_image.jpg')
shifted_images_dir = osp.join(out_dir, '{}'.format(img_id), 'paths_images', 'path_{:03d}'.format(dim))
row_frames = []
img_id_num_of_frames = 0
for t in range(len(structure[img_id]['path_{:03d}'.format(dim)])):
img_id_num_of_frames += 1
for t in range(len(structure[img_id]['path_{:03d}'.format(dim)])):
shifted_img_file = osp.join(shifted_images_dir, '{:06d}.jpg'.format(t))
# Concatenate `original_img_file` and `shifted_img_file`
row_frames.append(get_concat_h(img_file_orig=original_img_file,
shifted_img_file=shifted_img_file,
size=args.img_size,
img_id=img_id,
s=t,
shift_steps=img_id_num_of_frames,
path_id=dim))
num_of_frames.append(img_id_num_of_frames)
gif_frames.append(row_frames)
if len(set(num_of_frames)) > 1:
print("#. Warning: Inconsistent number of frames for image sequences: {}".format(num_of_frames))
# Create full GIF frames
full_gif_frames = []
for f in range(int(num_of_frames[0])):
gif_f = Image.new('RGB', (2 * args.gif_size, len(structure) * args.gif_size))
for i in range(len(structure)):
gif_f.paste(gif_frames[i][f], (0, i * args.gif_size))
full_gif_frames.append(gif_f)
# Save gif
im = Image.new(mode='RGB', size=(2 * args.gif_size, len(structure) * args.gif_size))
im.save(
fp=osp.join(out_dir, 'paths_gifs', 'path_{:03d}.gif'.format(dim)),
append_images=full_gif_frames,
save_all=True,
optimize=True,
loop=0,
duration=1000 // args.gif_fps)
if __name__ == '__main__':
main()