-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdma_mr_inverse_uncertainty_mapping.py
171 lines (110 loc) · 4.75 KB
/
dma_mr_inverse_uncertainty_mapping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import jax
from jax import config
import jax.numpy as np
config.update("jax_enable_x64", True)
from DMA_MR_ss import *
import matplotlib.pyplot as plt
from opyrability import implicit_map
theta = np.linspace(0, 2 * np.pi, 400)
phi = np.pi / 4
a, b= 0.15, 1
h, k = 22.4 , 39.4
y1 = h + (a * np.cos(theta) * np.cos(phi) - b * np.sin(theta) * np.sin(phi))
y2 = k + (b * np.sin(theta) * np.cos(phi) + a * np.cos(theta) * np.cos(phi))
AIS_PTS=np.array([y1,y2]).T
plt.plot(AIS_PTS[:,0], AIS_PTS[:,1])
output_init = np.array([480.00, 600.00])
AIS, AOS, AIS_poly, AOS_poly = implicit_map(dma_mr_uncertain_flows,
output_init,
continuation='odeint',
domain_points=AIS_PTS,
direction = 'inverse')
AOS_PTS = AOS.reshape(-1,2)
plt.figure()
plt.plot(AOS_PTS[1:,0], AOS_PTS[1:,1])
from jax import random
# Set the key for random number generation
key = random.PRNGKey(0)
# Number of simulation points and center of ellipse.
num_simulations = 10000
a, b= 0.15, 1
# Scaling factor for 95% confidence interval in 2D
from scipy.stats import chi2
alpha = 0.95 # Confidence
dof = 2 # Degrees of freedom
# scaling factor, 2.4477 for 95%
scaling_factor = np.sqrt(chi2.ppf(alpha, dof))
# Adjust the a and b values - here a and b are adjusted to be able to build the covariance matrix to draw the multivariate normal distribution that will be within 95% of the cloud of points.
a_adjusted = a / scaling_factor
b_adjusted = b / scaling_factor
# Constructing the covariance matrix using a, b, and rotation matrix
covariance_matrix_initial = np.array([[a_adjusted**2, 0],
[0, b_adjusted**2]])
rotation_matrix = np.array([[np.cos(phi), -np.sin(phi)],
[np.sin(phi), np.cos(phi)]])
covariance_matrix_constructed = rotation_matrix @ covariance_matrix_initial @ rotation_matrix.T
# Plotting the ellipses with constructed covariance matrix
fig, ax = plt.subplots(figsize=(8, 8))
ax.plot(y1, y2, 'r--', label='Ellipse from Parametric Equations')
# Monte Carlo Sampling simulations
mean = np.array([h, k])
samples = random.multivariate_normal(key, mean, covariance_matrix_constructed, (num_simulations,))
hb=ax.hexbin(samples[:, 0], samples[:, 1], gridsize=150, cmap='viridis', bins='log')
fig.colorbar(hb, ax=ax, label='log10(N)')
ax.set_xlabel('Benzene production [mg/h]')
ax.set_ylabel('Natural gas conversion [\%]')
ax.set_title('Comparison vs Monte Carlo Sampling')
ax.legend()
plt.show()
from opyrability import nlp_based_approach
from DMA_MR_ss import dma_mr_uncertain_flows_check
benzene_samples = samples[:, 0]
ch4_samples = samples[:, 1]
# Calculating for each Monte Carlo simulation
v0_values = []
v_He_values = []
DOS_resolution = [1, 1]
u0 = output_init
lb = np.array([300, 300])
ub = np.array([1000, 1000])
for i in range(num_simulations):
benzene = benzene_samples[i]
ch4 = ch4_samples[i]
DOS_bounds = np.array([[benzene, benzene],
[ch4, ch4]])
fDIS, fDOS, conv = nlp_based_approach(dma_mr_uncertain_flows_check,
DOS_bounds,
DOS_resolution,
u0,
lb,ub,
method='ipopt',
plot=False,
ad=False,
warmstart=True)
v0_values.append(fDIS[:,0])
v_He_values.append(fDIS[:,1])
# Adjusting global font size
plt.rcParams.update({'font.size': 14})
fig, ax1 = plt.subplots(figsize=(7,6))
hb = ax1.hexbin(benzene_samples, ch4_samples, gridsize=150, cmap='viridis', bins='log')
fig.colorbar(hb, ax=ax1, label='log10(N)')
ax1.plot(y1, y2, 'r--', label='Disturbance region described by closed-path')
ax1.set_title('Output variables s.t disturbances')
ax1.set_xlabel('Benzene production (mg/h)')
ax1.set_ylabel('Natural Gas conversion (%)')
fig.tight_layout()
plt.show()
fig, ax2 = plt.subplots(figsize=(7,6))
hb = ax2.hexbin(v0_values, v_He_values, gridsize=150, cmap='viridis', bins='log')
fig.colorbar(hb, ax=ax2, label='log10(N)')
ax2.plot(AOS_PTS[1:,0], AOS_PTS[1:,1],'r--', label='opyrability')
ax2.set_title('Input variables s.t disturbances')
ax2.set_xlabel('Tube flow rate [cm3/h]')
ax2.set_ylabel('Shell flow rate [cm3/h]')
fig.tight_layout()
plt.show()
import numpy as npp
v_He_hexbin = npp.array(v_He_values)
v0_hexbin = npp.array(v0_values)
AOS_PTS_hexbin = npp.array(AOS_PTS)
npp.savez('montecarlo_data.npz', v_He_hexbin, v0_hexbin, AOS_PTS_hexbin)