-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_plots_dma_mr.py
135 lines (109 loc) · 4.37 KB
/
generate_plots_dma_mr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import jax.numpy as np
import matplotlib.pyplot as plt
from scipy.stats import chi2
from jax import random
plt.rcParams.update({'font.size': 16})
# Load data that was generated in the Jupyter notebook session.
data = np.load('montecarlo.npz')
v_He_values = data['arr_0']
v0_values = data['arr_1']
DIS_points = data['arr_2']
# Generate ellipse data
theta = np.linspace(0, 2 * np.pi, 400)
phi = np.pi / 4
a, b = 0.15, 1
h, k = 22.4, 39.4
y1 = h + (a * np.cos(theta) * np.cos(phi) - b * np.sin(theta) * np.sin(phi))
y2 = k + (b * np.sin(theta) * np.cos(phi) + a * np.cos(theta) * np.cos(phi))
# Set the key for random number generation
key = random.PRNGKey(0)
# Number of simulation points and center of ellipse
num_simulations = 10000
# Scaling factor for 95% confidence interval in 2D
alpha = 0.95 # Confidence
dof = 2 # Degrees of freedom
scaling_factor = np.sqrt(chi2.ppf(alpha, dof)) # Take the square root
# Adjust the a and b values
a_adjusted = a / scaling_factor
b_adjusted = b / scaling_factor
# Construct covariance matrix
covariance_matrix_initial = np.array([[a_adjusted**2, 0],
[0, b_adjusted**2]])
rotation_matrix = np.array([[np.cos(phi), -np.sin(phi)],
[np.sin(phi), np.cos(phi)]])
covariance_matrix_constructed = rotation_matrix @ covariance_matrix_initial @ rotation_matrix.T
# Generate Monte Carlo samples
mean = np.array([h, k])
samples = random.multivariate_normal(key, mean, covariance_matrix_constructed, (num_simulations,))
# Create side-by-side subplots
fig, axs = plt.subplots(1, 2, figsize=(20, 8))
# First subplot: Output Space Variables
axs[0].plot(y1, y2, 'r--', label='Ellipse from Parametric Equation', linewidth=3)
hb1 = axs[0].hexbin(samples[:, 0], samples[:, 1], gridsize=50, cmap='viridis', bins='log', label='Monte Carlo (Hexagonal bins)')
cb1 = fig.colorbar(hb1, ax=axs[0], label='$log_{10}(N)$')
axs[0].set_xlabel('Benzene ($C_{6}H_{6}$) production [mg/h]')
axs[0].set_ylabel('Methane ($CH_4$) conversion [%]')
axs[0].set_title('Output Space Variables (Domain - AOS)')
axs[0].legend()
# Second subplot: Input Space Variables
axs[1].plot(DIS_points[1:, 0], DIS_points[1:, 1], 'r--', label='Uncertainty Mapping', linewidth=3)
hb2 = axs[1].hexbin(v0_values, v_He_values, gridsize=50, cmap='viridis', bins='log', label='Monte Carlo (Hexagonal bins)')
cb2 = fig.colorbar(hb2, ax=axs[1], label='$log_{10}(N)$')
axs[1].set_xlabel('Tube flow rate [$cm^3/h$]')
axs[1].set_ylabel('Shell flow rate [$cm^3/h$]')
axs[1].set_title('Input Space Variables (Image - AIS)')
axs[1].legend()
# Adjust layout and save as PDF
plt.tight_layout()
# plt.savefig('implicit_inverse_dma.pdf', format='pdf')
plt.show()
import matplotlib.pyplot as plt
import matplotlib.path as mpath
import seaborn as sns
import numpy as np
# Define the path and points
path = mpath.Path(np.array(DIS_points))
points = np.hstack([v0_values, v_He_values])
# Calculate inside and outside points
inside_points = path.contains_points(points)
points_in = np.sum(inside_points)
points_out = len(points) - points_in
# Print results
print('There are', points_in, 'points within the ellipse')
print('There are', points_out, 'points outside the ellipse')
print(f'{(points_in / num_simulations) * 100:.2f}% of points are inside the ellipse')
# Hexagonal bin plot with seaborn
sns.set_theme(style="ticks") # Use style without a grid
g = sns.jointplot(
x=v0_values.reshape(-1),
y=v_He_values.reshape(-1),
kind="hex",
color="#002855"
)
g.fig.set_size_inches(10, 8)
# Increase font size
font_size = 18
g.ax_joint.set_xlabel('Tube flow rate [$cm^3/h$]', fontsize=font_size)
g.ax_joint.set_ylabel('Shell flow rate [$cm^3/h$]', fontsize=font_size)
g.fig.suptitle(
'Hexagonal Bin - Input Variables with Disturbances',
fontsize=font_size + 2,
y=1.03
)
# Overlay the uncertainty mapping curve
line = g.ax_joint.plot(
DIS_points[1:, 0],
DIS_points[1:, 1],
'r--',
label="Uncertainty Mapping"
)
# Remove gridlines
g.ax_joint.grid(False)
# Increase tick label font size
g.ax_joint.tick_params(axis='both', which='major', labelsize=font_size - 2)
# Add legend with larger font size
g.ax_joint.legend(handles=line, loc='upper right', fontsize=font_size - 4)
# Save the plot as a PDF with adjusted margins
g.fig.tight_layout(rect=[0, 0, 1, 0.97]) # Adjust layout without cropping the title
# g.fig.savefig('hexagonal_input_disturbances.pdf', format='pdf')
plt.show()