|
| 1 | +# ------------------------------------------------------------------------------ |
| 2 | +# Copyright (c) Microsoft |
| 3 | +# Licensed under the MIT License. |
| 4 | +# Written by Bin Xiao ([email protected]) |
| 5 | +# ------------------------------------------------------------------------------ |
| 6 | + |
| 7 | +from __future__ import absolute_import |
| 8 | +from __future__ import division |
| 9 | +from __future__ import print_function |
| 10 | + |
| 11 | +import os |
| 12 | +import yaml |
| 13 | + |
| 14 | +import numpy as np |
| 15 | +from easydict import EasyDict as edict |
| 16 | + |
| 17 | + |
| 18 | +config = edict() |
| 19 | + |
| 20 | +config.OUTPUT_DIR = '' |
| 21 | +config.LOG_DIR = '' |
| 22 | +config.DATA_DIR = '' |
| 23 | +config.GPUS = '0' |
| 24 | +config.WORKERS = 4 |
| 25 | +config.PRINT_FREQ = 20 |
| 26 | + |
| 27 | +# Cudnn related params |
| 28 | +config.CUDNN = edict() |
| 29 | +config.CUDNN.BENCHMARK = True |
| 30 | +config.CUDNN.DETERMINISTIC = False |
| 31 | +config.CUDNN.ENABLED = True |
| 32 | + |
| 33 | +# neuron_resnet related params |
| 34 | +NEURON_RESNET = edict() |
| 35 | +NEURON_RESNET.NUM_LAYERS = 50 |
| 36 | +NEURON_RESNET.DECONV_WITH_BIAS = False |
| 37 | +NEURON_RESNET.NUM_DECONV_LAYERS = 3 |
| 38 | +NEURON_RESNET.NUM_DECONV_FILTERS = [256, 256, 256] |
| 39 | +NEURON_RESNET.NUM_DECONV_KERNELS = [4, 4, 4] |
| 40 | +NEURON_RESNET.FINAL_CONV_KERNEL = 1 |
| 41 | +NEURON_RESNET.TARGET_TYPE = 'gaussian' |
| 42 | +NEURON_RESNET.HEATMAP_SIZE = [64, 64] # width * height, ex: 24 * 32 |
| 43 | +NEURON_RESNET.SIGMA = 2 |
| 44 | + |
| 45 | +MODEL_EXTRAS = { |
| 46 | + 'neuron_resnet': NEURON_RESNET, |
| 47 | +} |
| 48 | + |
| 49 | +# common params for NETWORK |
| 50 | +config.MODEL = edict() |
| 51 | +config.MODEL.NAME = 'neuron_resnet' |
| 52 | +config.MODEL.INIT_WEIGHTS = True |
| 53 | +config.MODEL.INIT_DECONVS = False |
| 54 | +config.MODEL.INTEGRAL_REG = False |
| 55 | +config.MODEL.INTEGRAL_LOSS_TYPE = 'L1' |
| 56 | +config.MODEL.PRETRAINED = '' |
| 57 | +config.MODEL.IMAGE_SIZE = [128, 128] # width * height, ex: 192 * 256 |
| 58 | +config.MODEL.INPUT_SIZE = [128, 128] |
| 59 | +config.MODEL.OUTPUT_SIZE = [64, 64] |
| 60 | +config.MODEL.DEPTH_DIM = 1 |
| 61 | +config.MODEL.EXTRA = MODEL_EXTRAS[config.MODEL.NAME] |
| 62 | + |
| 63 | +config.MODEL.STYLE = 'pytorch' |
| 64 | + |
| 65 | +config.MODEL.DEPTH = 0.05 |
| 66 | +config.MODEL.VAR_NOISE = 1.0 |
| 67 | + |
| 68 | +config.LOSS = edict() |
| 69 | +config.LOSS.USE_TARGET_WEIGHT = True |
| 70 | + |
| 71 | +# DATASET related params |
| 72 | +config.DATASET = edict() |
| 73 | +config.DATASET.ROOT = '' |
| 74 | +config.DATASET.DATASET = 'simulation' |
| 75 | +config.DATASET.TRAIN_SET = 'train' |
| 76 | +config.DATASET.TEST_SET = 'valid' |
| 77 | +config.DATASET.DATA_FORMAT = 'jpg' |
| 78 | + |
| 79 | +# training data augmentation |
| 80 | +config.DATASET.FLIP = True |
| 81 | +config.DATASET.SCALE_FACTOR = 0.25 |
| 82 | +config.DATASET.ROT_FACTOR = 30 |
| 83 | +config.DATASET.PAD_BORDER = True |
| 84 | + |
| 85 | +# train |
| 86 | +config.TRAIN = edict() |
| 87 | + |
| 88 | +config.TRAIN.LR_FACTOR = 0.1 |
| 89 | +config.TRAIN.LR_STEP = [90, 110] |
| 90 | +config.TRAIN.LR = 0.001 |
| 91 | + |
| 92 | +config.TRAIN.OPTIMIZER = 'adam' |
| 93 | +config.TRAIN.MOMENTUM = 0.9 |
| 94 | +config.TRAIN.WD = 0.0001 |
| 95 | +config.TRAIN.NESTEROV = False |
| 96 | +config.TRAIN.GAMMA1 = 0.99 |
| 97 | +config.TRAIN.GAMMA2 = 0.0 |
| 98 | + |
| 99 | +config.TRAIN.BEGIN_EPOCH = 0 |
| 100 | +config.TRAIN.END_EPOCH = 140 |
| 101 | + |
| 102 | +config.TRAIN.RESUME = False |
| 103 | +config.TRAIN.CHECKPOINT = '' |
| 104 | + |
| 105 | +config.TRAIN.BATCH_SIZE = 32 |
| 106 | +config.TRAIN.SHUFFLE = True |
| 107 | + |
| 108 | +config.TRAIN.NUM_SAMPLES = 1e5 |
| 109 | + |
| 110 | +# testing |
| 111 | +config.TEST = edict() |
| 112 | + |
| 113 | +# size of images for each device |
| 114 | +config.TEST.BATCH_SIZE = 32 |
| 115 | +# Test Model Epoch |
| 116 | +config.TEST.FLIP_TEST = False |
| 117 | +config.TEST.POST_PROCESS = True |
| 118 | +config.TEST.SHIFT_HEATMAP = True |
| 119 | + |
| 120 | +config.TEST.USE_GT_BBOX = False |
| 121 | +# nms |
| 122 | +config.TEST.OKS_THRE = 0.5 |
| 123 | +config.TEST.IN_VIS_THRE = 0.0 |
| 124 | +config.TEST.COCO_BBOX_FILE = '' |
| 125 | +config.TEST.BBOX_THRE = 1.0 |
| 126 | +config.TEST.MODEL_FILE = '' |
| 127 | +config.TEST.IMAGE_THRE = 0.0 |
| 128 | +config.TEST.NMS_THRE = 1.0 |
| 129 | + |
| 130 | +config.TEST.NUM_SAMPLES = 5e3 |
| 131 | + |
| 132 | +# debug |
| 133 | +config.DEBUG = edict() |
| 134 | +config.DEBUG.DEBUG = False |
| 135 | +config.DEBUG.SAVE_BATCH_IMAGES_GT = False |
| 136 | +config.DEBUG.SAVE_BATCH_IMAGES_PRED = False |
| 137 | +config.DEBUG.SAVE_HEATMAPS_GT = False |
| 138 | +config.DEBUG.SAVE_HEATMAPS_PRED = False |
| 139 | + |
| 140 | + |
| 141 | +def _update_dict(k, v): |
| 142 | + if k == 'DATASET': |
| 143 | + if 'MEAN' in v and v['MEAN']: |
| 144 | + v['MEAN'] = np.array([eval(x) if isinstance(x, str) else x |
| 145 | + for x in v['MEAN']]) |
| 146 | + if 'STD' in v and v['STD']: |
| 147 | + v['STD'] = np.array([eval(x) if isinstance(x, str) else x |
| 148 | + for x in v['STD']]) |
| 149 | + if k == 'MODEL': |
| 150 | + if 'EXTRA' in v and 'HEATMAP_SIZE' in v['EXTRA']: |
| 151 | + if isinstance(v['EXTRA']['HEATMAP_SIZE'], int): |
| 152 | + v['EXTRA']['HEATMAP_SIZE'] = np.array( |
| 153 | + [v['EXTRA']['HEATMAP_SIZE'], v['EXTRA']['HEATMAP_SIZE']]) |
| 154 | + else: |
| 155 | + v['EXTRA']['HEATMAP_SIZE'] = np.array( |
| 156 | + v['EXTRA']['HEATMAP_SIZE']) |
| 157 | + if 'IMAGE_SIZE' in v: |
| 158 | + if isinstance(v['IMAGE_SIZE'], int): |
| 159 | + v['IMAGE_SIZE'] = np.array([v['IMAGE_SIZE'], v['IMAGE_SIZE']]) |
| 160 | + else: |
| 161 | + v['IMAGE_SIZE'] = np.array(v['IMAGE_SIZE']) |
| 162 | + for vk, vv in v.items(): |
| 163 | + if vk in config[k]: |
| 164 | + config[k][vk] = vv |
| 165 | + else: |
| 166 | + raise ValueError("{}.{} not exist in config.py".format(k, vk)) |
| 167 | + |
| 168 | + |
| 169 | +def update_config(config_file): |
| 170 | + exp_config = None |
| 171 | + with open(config_file) as f: |
| 172 | + exp_config = edict(yaml.load(f)) |
| 173 | + for k, v in exp_config.items(): |
| 174 | + if k in config: |
| 175 | + if isinstance(v, dict): |
| 176 | + _update_dict(k, v) |
| 177 | + else: |
| 178 | + if k == 'SCALES': |
| 179 | + config[k][0] = (tuple(v)) |
| 180 | + else: |
| 181 | + config[k] = v |
| 182 | + else: |
| 183 | + raise ValueError("{} not exist in config.py".format(k)) |
| 184 | + |
| 185 | + |
| 186 | +def gen_config(config_file): |
| 187 | + cfg = dict(config) |
| 188 | + for k, v in cfg.items(): |
| 189 | + if isinstance(v, edict): |
| 190 | + cfg[k] = dict(v) |
| 191 | + |
| 192 | + with open(config_file, 'w') as f: |
| 193 | + yaml.dump(dict(cfg), f, default_flow_style=False) |
| 194 | + |
| 195 | + |
| 196 | +def update_dir(model_dir, log_dir, data_dir): |
| 197 | + if model_dir: |
| 198 | + config.OUTPUT_DIR = model_dir |
| 199 | + |
| 200 | + if log_dir: |
| 201 | + config.LOG_DIR = log_dir |
| 202 | + |
| 203 | + if data_dir: |
| 204 | + config.DATA_DIR = data_dir |
| 205 | + |
| 206 | + config.DATASET.ROOT = os.path.join( |
| 207 | + config.DATA_DIR, config.DATASET.ROOT) |
| 208 | + |
| 209 | + config.TEST.COCO_BBOX_FILE = os.path.join( |
| 210 | + config.DATA_DIR, config.TEST.COCO_BBOX_FILE) |
| 211 | + |
| 212 | + config.MODEL.PRETRAINED = os.path.join( |
| 213 | + config.DATA_DIR, config.MODEL.PRETRAINED) |
| 214 | + |
| 215 | + |
| 216 | +def get_model_name(cfg): |
| 217 | + name = cfg.MODEL.NAME |
| 218 | + full_name = cfg.MODEL.NAME |
| 219 | + extra = cfg.MODEL.EXTRA |
| 220 | + if name in ['neuron_resnet']: |
| 221 | + name = '{model}_{num_layers}'.format( |
| 222 | + model=name, |
| 223 | + num_layers=extra.NUM_LAYERS) |
| 224 | + deconv_suffix = ''.join( |
| 225 | + 'd{}'.format(num_filters) |
| 226 | + for num_filters in extra.NUM_DECONV_FILTERS) |
| 227 | + full_name = '{height}x{width}_{name}_{deconv_suffix}'.format( |
| 228 | + height=cfg.MODEL.IMAGE_SIZE[1], |
| 229 | + width=cfg.MODEL.IMAGE_SIZE[0], |
| 230 | + name=name, |
| 231 | + deconv_suffix=deconv_suffix) |
| 232 | + elif name not in ['keypoint_mlp']: |
| 233 | + raise ValueError('Unkown model: {}'.format(cfg.MODEL)) |
| 234 | + |
| 235 | + return name, full_name |
| 236 | + |
| 237 | + |
| 238 | +if __name__ == '__main__': |
| 239 | + import sys |
| 240 | + gen_config(sys.argv[1]) |
0 commit comments