@@ -131,45 +131,54 @@ def get_mesh(x_mesh, y_mesh):
131131 mesh = np .array ([Xsim ,Ysim ,np .zeros (d )]);
132132 return mesh
133133
134- def get_source (n_sources = [40 , 60 ],
135- p_n_sources = [.5 , .5 ],
136- depth = [.1 ],
137- p_depth = [1 ],
138- amplitude = [- 1 ,1 ],
139- p_amplitude = [.5 ,.5 ]):
140- """
141- Parameters:
142- -----------
143- n_sources: numpy array (int)
144- the number of sources in the plane
145-
146- p_n_sources: numpy array
147- The probabily distribution over the number of sources.
148-
149- depth: numpy array
150- the depth of sources
151-
152- p_depth: numpy array
153- The probabily distribution over the depth of sources.
154-
155- amplitude: numpy array
156- amplitude of sources.
157-
158- p_amplitude: numpy array
159- The probabily distribution over the amplitude of sources.
160-
161- Returns:
162- -------
163- sources: numpy array of shape (4, n)
164- the bio information of sources.
165- """
166-
167- number_of_sources = np .random .choice (a = n_sources , size = 1 , p = p_n_sources )[0 ]
168- sources = np .zeros (4 , number_of_sources );
169- d = np .expand_dims (np .random .choice (a = depth , size = number_of_sources , p = p_depth ),0 )
170- loc = np .random .rand (2 , number_of_sources )
171- amp = np .expand_dims (np .random .choice (a = amplitude , size = number_of_sources , p = p_amplitude ),0 )
172- sources = np .append (np .append (amp , loc , 0 ), d ,0 )
134+ # def get_source(n_sources=[40, 60],
135+ # p_n_sources=[.5, .5],
136+ # depth=[.1],
137+ # p_depth=[1],
138+ # amplitude=[-1,1],
139+ # p_amplitude=[.5,.5]):
140+ # """
141+ # Parameters:
142+ # -----------
143+ # n_sources: numpy array (int)
144+ # the number of sources in the plane
145+ #
146+ # p_n_sources: numpy array
147+ # The probabily distribution over the number of sources.
148+ #
149+ # depth: numpy array
150+ # the depth of sources
151+ #
152+ # p_depth: numpy array
153+ # The probabily distribution over the depth of sources.
154+ #
155+ # amplitude: numpy array
156+ # amplitude of sources.
157+ #
158+ # p_amplitude: numpy array
159+ # The probabily distribution over the amplitude of sources.
160+ #
161+ # Returns:
162+ # -------
163+ # sources: numpy array of shape (4, n)
164+ # the bio information of sources.
165+ # """
166+ #
167+ # number_of_sources = np.random.choice(a=n_sources, size=1, p=p_n_sources)[0]
168+ # sources = np.zeros(4, number_of_sources);
169+ # d = np.expand_dims(np.random.choice(a=depth, size=number_of_sources, p=p_depth),0)
170+ # loc = np.random.rand(2, number_of_sources)
171+ # amp = np.expand_dims(np.random.choice(a=amplitude, size=number_of_sources, p=p_amplitude),0)
172+ # sources = np.append(np.append(amp, loc, 0), d,0)
173+ # return sources
174+
175+ def get_source (depth , n_sources , var_noise ):
176+
177+ sources = np .random .rand (4 , n_sources );
178+ sources [3 , :] = depth
179+ sources [0 , :] = 2 * np .floor (2 * sources [0 , :])- 1 ;
180+ # image = evalpotential(mesh, sources);
181+ # image = image.reshape((y_mesh, x_mesh)) + var_noise*np.random.randn(y_mesh, x_mesh)
173182 return sources
174183
175184def generate_heatmaps (keypoints , im_height , im_width ):
0 commit comments