@@ -131,45 +131,54 @@ def get_mesh(x_mesh, y_mesh):
131
131
mesh = np .array ([Xsim ,Ysim ,np .zeros (d )]);
132
132
return mesh
133
133
134
- def get_source (n_sources = [40 , 60 ],
135
- p_n_sources = [.5 , .5 ],
136
- depth = [.1 ],
137
- p_depth = [1 ],
138
- amplitude = [- 1 ,1 ],
139
- p_amplitude = [.5 ,.5 ]):
140
- """
141
- Parameters:
142
- -----------
143
- n_sources: numpy array (int)
144
- the number of sources in the plane
145
-
146
- p_n_sources: numpy array
147
- The probabily distribution over the number of sources.
148
-
149
- depth: numpy array
150
- the depth of sources
151
-
152
- p_depth: numpy array
153
- The probabily distribution over the depth of sources.
154
-
155
- amplitude: numpy array
156
- amplitude of sources.
157
-
158
- p_amplitude: numpy array
159
- The probabily distribution over the amplitude of sources.
160
-
161
- Returns:
162
- -------
163
- sources: numpy array of shape (4, n)
164
- the bio information of sources.
165
- """
166
-
167
- number_of_sources = np .random .choice (a = n_sources , size = 1 , p = p_n_sources )[0 ]
168
- sources = np .zeros (4 , number_of_sources );
169
- d = np .expand_dims (np .random .choice (a = depth , size = number_of_sources , p = p_depth ),0 )
170
- loc = np .random .rand (2 , number_of_sources )
171
- amp = np .expand_dims (np .random .choice (a = amplitude , size = number_of_sources , p = p_amplitude ),0 )
172
- sources = np .append (np .append (amp , loc , 0 ), d ,0 )
134
+ # def get_source(n_sources=[40, 60],
135
+ # p_n_sources=[.5, .5],
136
+ # depth=[.1],
137
+ # p_depth=[1],
138
+ # amplitude=[-1,1],
139
+ # p_amplitude=[.5,.5]):
140
+ # """
141
+ # Parameters:
142
+ # -----------
143
+ # n_sources: numpy array (int)
144
+ # the number of sources in the plane
145
+ #
146
+ # p_n_sources: numpy array
147
+ # The probabily distribution over the number of sources.
148
+ #
149
+ # depth: numpy array
150
+ # the depth of sources
151
+ #
152
+ # p_depth: numpy array
153
+ # The probabily distribution over the depth of sources.
154
+ #
155
+ # amplitude: numpy array
156
+ # amplitude of sources.
157
+ #
158
+ # p_amplitude: numpy array
159
+ # The probabily distribution over the amplitude of sources.
160
+ #
161
+ # Returns:
162
+ # -------
163
+ # sources: numpy array of shape (4, n)
164
+ # the bio information of sources.
165
+ # """
166
+ #
167
+ # number_of_sources = np.random.choice(a=n_sources, size=1, p=p_n_sources)[0]
168
+ # sources = np.zeros(4, number_of_sources);
169
+ # d = np.expand_dims(np.random.choice(a=depth, size=number_of_sources, p=p_depth),0)
170
+ # loc = np.random.rand(2, number_of_sources)
171
+ # amp = np.expand_dims(np.random.choice(a=amplitude, size=number_of_sources, p=p_amplitude),0)
172
+ # sources = np.append(np.append(amp, loc, 0), d,0)
173
+ # return sources
174
+
175
+ def get_source (depth , n_sources , var_noise ):
176
+
177
+ sources = np .random .rand (4 , n_sources );
178
+ sources [3 , :] = depth
179
+ sources [0 , :] = 2 * np .floor (2 * sources [0 , :])- 1 ;
180
+ # image = evalpotential(mesh, sources);
181
+ # image = image.reshape((y_mesh, x_mesh)) + var_noise*np.random.randn(y_mesh, x_mesh)
173
182
return sources
174
183
175
184
def generate_heatmaps (keypoints , im_height , im_width ):
0 commit comments