You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[`DataColumn`](DataColumn.md) represents a column of values. It can store objects of primitive or reference types, or other [`DataFrames`](DataFrame.md).
4
+
[`DataColumn`](DataColumn.md) represents a column of values.
5
+
It can store objects of primitive or reference types,
6
+
or other [`DataFrame`](DataFrame.md) objects.
5
7
6
8
See [how to create columns](createColumn.md)
7
9
8
10
### Properties
9
-
*`name: String` — name of the column, should be unique within containing dataframe
10
-
*`path: ColumnPath` — path to the column, depends on the way column was retrieved from dataframe
11
+
*`name: String` — name of the column; should be unique within containing dataframe
12
+
*`path: ColumnPath` — path to the column; depends on the way column was retrieved from dataframe
11
13
*`type: KType` — type of elements in the column
12
14
*`hasNulls: Boolean` — flag indicating whether column contains `null` values
13
15
*`values: Iterable<T>` — column data
@@ -20,17 +22,18 @@ See [how to create columns](createColumn.md)
20
22
21
23
Represents a sequence of values.
22
24
23
-
It can store values of primitive (integers, strings, decimals etc.) or reference types. Currently, it uses [`List`](https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/) as underlying data storage.
25
+
It can store values of primitive (integers, strings, decimals, etc.) or reference types.
26
+
Currently, it uses [`List`](https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/) as underlying data storage.
24
27
25
28
#### ColumnGroup
26
29
27
30
Container for nested columns. Is used to create column hierarchy.
28
31
29
32
#### FrameColumn
30
33
31
-
Special case of [`ValueColumn`](#valuecolumn) that stores other[`DataFrames`](DataFrame.md) as elements.
34
+
Special case of [`ValueColumn`](#valuecolumn) that stores another[`DataFrame`](DataFrame.md) objects as elements.
32
35
33
-
[`DataFrames`](DataFrame.md) stored in [`FrameColumn`](DataColumn.md#framecolumn) may have different schemas.
36
+
[`DataFrame`](DataFrame.md) stored in [`FrameColumn`](DataColumn.md#framecolumn) may have different schemas.
34
37
35
38
[`FrameColumn`](DataColumn.md#framecolumn) may appear after [reading](read.md) from JSON or other hierarchical data structures, or after grouping operations such as [groupBy](groupBy.md) or [pivot](pivot.md).
Copy file name to clipboardExpand all lines: docs/StardustDocs/topics/DataRow.md
+5-5
Original file line number
Diff line number
Diff line change
@@ -11,19 +11,19 @@
11
11
*`prev(): DataRow?` — previous row (`null` for the first row)
12
12
*`next(): DataRow?` — next row (`null` for the last row)
13
13
*`diff(T) { rowExpression }: T / diffOrNull { rowExpression }: T?` — difference between the results of a [row expression](DataRow.md#row-expressions) calculated for current and previous rows
14
-
*`explode(columns): DataFrame<T>` — spread lists and [`DataFrames`](DataFrame.md) vertically into new rows
14
+
*`explode(columns): DataFrame<T>` — spread lists and [`DataFrame`](DataFrame.md) objects vertically into new rows
15
15
*`values(): List<Any?>` — list of all cell values from the current row
16
16
*`valuesOf<T>(): List<T>` — list of values of the given type
17
17
*`columnsCount(): Int` — number of columns
18
18
*`columnNames(): List<String>` — list of all column names
19
19
*`columnTypes(): List<KType>` — list of all column types
20
20
*`namedValues(): List<NameValuePair<Any?>>` — list of name-value pairs where `name` is a column name and `value` is cell value
21
21
*`namedValuesOf<T>(): List<NameValuePair<T>>` — list of name-value pairs where value has given type
22
-
*`transpose(): DataFrame<NameValuePair<*>>` — dataframe of two columns: `name: String` is column names and `value: Any?` is cell values
23
-
*`transposeTo<T>(): DataFrame<NameValuePair<T>>`— dataframe of two columns: `name: String` is column names and `value: T` is cell values
22
+
*`transpose(): DataFrame<NameValuePair<*>>` — [`DataFrame`](DataFrame.md) of two columns: `name: String` is column names and `value: Any?` is cell values
23
+
*`transposeTo<T>(): DataFrame<NameValuePair<T>>`— [`DataFrame`](DataFrame.md) of two columns: `name: String` is column names and `value: T` is cell values
24
24
*`getRow(Int): DataRow` — row from [`DataFrame`](DataFrame.md) by row index
25
-
*`getRows(Iterable<Int>): DataFrame` — dataframe with subset of rows selected by absolute row index.
26
-
*`relative(Iterable<Int>): DataFrame` — dataframe with subset of rows selected by relative row index: `relative(-1..1)` will return previous, current and next row. Requested indices will be coerced to the valid range and invalid indices will be skipped
25
+
*`getRows(Iterable<Int>): DataFrame` — [`DataFrame`](DataFrame.md) with subset of rows selected by absolute row index.
26
+
*`relative(Iterable<Int>): DataFrame` — [`DataFrame`](DataFrame.md) with subset of rows selected by relative row index: `relative(-1..1)` will return previous, current and next row. Requested indices will be coerced to the valid range and invalid indices will be skipped
27
27
*`getValue<T>(columnName)` — cell value of type `T` by this row and given `columnName`
28
28
*`getValueOrNull<T>(columnName)` — cell value of type `T?` by this row and given `columnName` or `null` if there's no such column
29
29
*`get(column): T` — cell value by this row and given `column`
*[`explode`](explode.md) — distributes lists of values or [`DataFrames`](DataFrame.md) in given columns vertically, replicating data in other columns
4
-
*[`implode`](implode.md) — collects column values in given columns into lists or [`DataFrames`](DataFrame.md), grouping by other columns
3
+
*[`explode`](explode.md) — distributes lists of values or [`DataFrame`](DataFrame.md) object in given columns vertically, replicating data in other columns
4
+
*[`implode`](implode.md) — collects column values in given columns into lists or [`DataFrame`](DataFrame.md) objects, grouping by other columns
Copy file name to clipboardExpand all lines: docs/StardustDocs/topics/extensionPropertiesApi.md
+1-1
Original file line number
Diff line number
Diff line change
@@ -32,7 +32,7 @@ In notebooks, extension properties are generated for [`DataSchema`](schemas.md)
32
32
instance after REPL line execution.
33
33
After that [`DataFrame`](DataFrame.md) variable is typed with its own [`DataSchema`](schemas.md), so only valid extension properties corresponding to actual columns in DataFrame will be allowed by the compiler and suggested by completion.
34
34
35
-
Extension properties can be generated in IntelliJ IDEA using the [Kotlin Dataframe Gradle plugin](schemasGradle.md#configuration).
35
+
Extension properties can be generated in IntelliJ IDEA using the [Kotlin DataFrame Gradle plugin](schemasGradle.md#configuration).
36
36
37
37
<warning>
38
38
In notebooks generated properties won't appear and be updated until the cell has been executed. It often means that you have to introduce new variable frequently to sync extension properties with actual schema
0 commit comments