-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.R
178 lines (152 loc) · 4.31 KB
/
example.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
library(plotly) # Use this for pretty graphs
library(tidyverse) # This includes the dplyr verbs and the magical pipe (%>%)
library(Lahman) # Use the built in data sets for our plots
# Read in the batting data from the Lahman library
battingData <- Batting
# Create a count of unqiue playerID's for each of the seven leagues
playersByLeague <- Batting %>%
group_by(lgID) %>%
summarise(
TotalPlayers = n_distinct(playerID)
)
# Create a bar plot of the counts and color it by league
# Note that whenever we are referencing a column name we need to use the '~'
plot_ly(
data = playersByLeague,
x = ~lgID,
y = ~TotalPlayers,
color = ~lgID,
type = 'bar'
)
# Lets recreate the previous graph but spruce it up a bit
plot_ly(
data = playersByLeague,
x = ~lgID,
y = ~TotalPlayers,
color = ~lgID,
hoverinfo = "x+y",
type = 'bar'
) %>%
layout(title = "Total Unique Players by League", showlegend=F,
xaxis = list(title = "League ID"), yaxis=list(title = "Total Players"))
# That was cool but what about over time?
# To do this we will make a line chart to display this information
# But first we must create our data set
playersByLeagueByYear <- battingData %>%
group_by(lgID, yearID) %>%
summarise(
TotalPlayers = n_distinct(playerID)
)
# First attempt
plot_ly(
data=playersByLeagueByYear,
x=~yearID,
y=~TotalPlayers,
color=~lgID,
type='scatter',
mode ='lines+markers'
)
# Clean it up some
plot_ly(
data=playersByLeagueByYear,
x=~yearID,
y=~TotalPlayers,
color=~lgID,
hoverinfo = "text",
text = ~paste("Year: ", yearID,
"<br> League: ", lgID,
"<br> Total Players: ", TotalPlayers),
type='scatter',
mode ='lines+markers'
) %>%
layout(title = "Total Players by Year and League",
xaxis = list(title="Year"),
yaxis = list(title="Total Players"))
playersByLeagueByYearByTeam <- battingData %>%
group_by(lgID, teamID, yearID) %>%
summarise(
TotalPlayers = n_distinct(playerID)
)
plot_ly(
data = playersByLeagueByYearByTeam,
x = ~yearID) %>%
add_markers(
y = ~TotalPlayers,
color = ~lgID,
hoverinfo = 'text',
text = ~paste("TeamID: ", teamID,
"<br> Total Players: ", TotalPlayers,
"<br> Year: ", yearID)) %>%
add_lines(y = ~fitted(lm(TotalPlayers ~ yearID)),
line = list(color = 'black'),
name = "Linear Trend") %>%
layout(title = "Total Players by Team, League, and Year", showlegend=F)
# How does the number of players that recieve an At-Bat affect the
# the number of At-Bats that players get
playerMeanAtBatsYearLeague <- battingData %>%
group_by(lgID, yearID, teamID) %>%
summarise(
TotalPlayers = n_distinct(playerID),
MeanAtBats = mean(AB)
)
plot_ly(
data = playerMeanAtBatsYearLeague,
x = ~TotalPlayers,
y = ~jitter(MeanAtBats),
hoverinfo = 'text',
text = ~teamID
) %>%
add_markers(frame = ~yearID) %>%
layout(title = "Total Players vs. Mean of At-Bats",
xaxis = list(title = "Total Players"),
yaxis = list(title = "Mean of At-Bats")) %>%
animation_opts(300, easing = 'elastic', redraw = F) %>%
animation_button(
x = 1, xanchor = "right", y = 0, yanchor = "bottom"
) %>%
animation_slider(
currentvalue = list(prefix = "Year ", font = list(color="red"))
)
p1 <- plot_ly(
data = playerMeanAtBatsYearLeague,
x= ~yearID,
y= ~MeanAtBats,
type ='scatter',
mode='lines',
name='Mean of At-Bats'
)
p2 <- plot_ly(
data = playerMeanAtBatsYearLeague,
x= ~yearID,
y= ~TotalPlayers,
type ='scatter',
mode='lines',
name = 'Total Players'
)
subplot(p1,p2, nrows = 2, shareX = T)
ggplotToTranslate <- ggplot(playerMeanAtBatsYearLeague, aes(x=yearID, y=TotalPlayers, color = lgID)) +
geom_point() +
geom_smooth(method='lm')
ggplotToTranslate %>%
ggplotly()
playerData <- Master
usPlayers <- playerData %>%
filter(birthCountry == 'USA') %>%
group_by(birthState) %>%
summarise(
Total = n_distinct(playerID)
)
plot_geo(usPlayers) %>%
add_trace(
z = ~Total,
locations = ~birthState,
locationmode = 'USA-states',
hoverinfo = "text",
text = ~paste("State: ", birthState,
"<br> Total: ", Total)
) %>%
layout(geo = list(
scope = 'usa',
projection = list(type = 'albers usa'),
lakecolor = toRGB('white')
))