-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemo21.tar
69 lines (63 loc) · 10 KB
/
memo21.tar
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
memo21.tex 0000644 0001750 0001750 00000006147 13706551774 011053 0 ustar njj njj \documentclass[12pt]{article}
\textwidth 160mm
\textheight 245mm
\oddsidemargin -3mm
\evensidemargin -3mm
\parskip 3mm
\parindent 0mm
\topmargin -20mm
\pagestyle{empty}
\usepackage{graphicx}
\graphicspath{{.}{./figures/}}
\usepackage{color}
\usepackage[utf8]{inputenc}
\usepackage{hyperref}
\usepackage{subcaption}
\usepackage{amssymb}
\usepackage{gensymb}
\newcommand{\memohead}[3]{\clearpage\begin{centering}\mbox{}\hrulefill \vskip 50mm \mbox{}{\Huge \bf LBWG memo #1}\\ \mbox{}\vskip 40mm {\Huge \bf #2}\mbox{}\vskip 40mm{\Large #3}\\\end{centering}\vfill\hrulefill\clearpage}
\usepackage{listings}
\usepackage{rotating}
\begin{document}
\memohead{21}{Clock-TEC separation parameter test}{Atvars Nikolajevs, Kaspars Prūsis, 2019.04.24}
During LOFAR Long-Baseline Busy Week in Dublin (15.04. - 18.04.), we been working on finding optimal Clock-TEC separation parameters.
We tested both types (gaincal and ddecal) by changing some parameters, mostly solint (number of time slots on which a solution is assumed to be constant) and nchan (number of channels on which a solution is assumed to be constant).
Results (.h5 files and plots) are stored on CEP3:
\begin{verbatim}
/data019/scratch/nikolajevs/
\end{verbatim}
In our opinion the best results we acquired are using {\tt gaincal\_tec\_solint5\_nchan10}. Full parset file:
\begin{verbatim}
msin=L1327+5504.ms
msin.datacolumn=DATA
msout=.
steps=[gaincal]
gaincal.type=gaincal
gaincal.caltype=tec
gaincal.parmdb=gaincal_tec_solint5_nchan10.h5
gaincal.solint=5
gaincal.nchan=10
gaincal.sourcedb=L1327+5504.ms/sky
\end{verbatim}
By using ddecal type, resulting plots with slightly different parameters significantly differed from each other - there was no common pattern. We did not observe a difference between using caltype tec and tecandphase.
List of parameters we tested (other parameters are default):
\begin{verbatim}
ddecal_tec_solint3_nchan10_propagate_all_approx_tec
ddecal_tec_solint3_nchan10_propagate_all
ddecal_tec_solint5_nchan10
ddecal_tec_solint5_nchan10_propagate_all
gaincal_tec_solint2_nchan10
gaincal_tec_solint2_nchan20
gaincal_tec_solint3_nchan10
gaincal_tec_solint3_nchan15
gaincal_tec_solint4_nchan10
gaincal_tec_solint5_nchan8
gaincal_tec_solint5_nchan10
gaincal_tec_solint5_nchan12
gaincal_tecandphase_solint5_nchan10
\end{verbatim}
{\noindent \bf Background}. The LOFAR stations have their own clocks which are not perfectly synchronized with the single clock that is used for all the core stations. This causes a strong phase delay across the frequency band for the remote-to-remote and core-to-remote baselines. The large clock offsets need to be corrected before calibration of the directional part.
There is a method called "Clock-TEC separation" to derive the clock values from an observation of a bright calibrator source. Once the clock values are determined the target field data for this effect can be corrected with BBS. Removing the time varying clock is equivalent to applying a frequency and time dependent phase correction to each station.
(van Weeren et al. 2016)
\end{document}