forked from hzy46/Char-RNN-TensorFlow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
227 lines (197 loc) · 8.76 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# coding: utf-8
from __future__ import print_function
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
import time
import os
def pick_top_n(preds, vocab_size, top_n=5):
p = np.squeeze(preds)
# 将除了top_n个预测值的位置都置为0
p[np.argsort(p)[:-top_n]] = 0
# 归一化概率
p = p / np.sum(p)
# 随机选取一个字符
c = np.random.choice(vocab_size, 1, p=p)[0]
return c
class CharRNN:
def __init__(self, num_classes, num_seqs=64, num_steps=50,
lstm_size=128, num_layers=2, learning_rate=0.001,
grad_clip=5, sampling=False, train_keep_prob=0.5, use_embedding=False, embedding_size=128):
if sampling is True:
num_seqs, num_steps = 1, 1
else:
num_seqs, num_steps = num_seqs, num_steps
self.step = 0
self.num_classes = num_classes
self.num_seqs = num_seqs
self.num_steps = num_steps
self.lstm_size = lstm_size
self.num_layers = num_layers
self.learning_rate = learning_rate
self.grad_clip = grad_clip
self.train_keep_prob = train_keep_prob
self.use_embedding = use_embedding
self.embedding_size = embedding_size
tf.reset_default_graph()
self.build_inputs()
self.build_lstm()
self.build_loss()
self.build_optimizer()
self.saver = tf.train.Saver()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
self.session = tf.Session(config=config)
self.restored = False
def build_inputs(self):
with tf.name_scope('inputs'):
self.inputs = tf.placeholder(tf.int32, shape=(
self.num_seqs, self.num_steps), name='inputs')
self.targets = tf.placeholder(tf.int32, shape=(
self.num_seqs, self.num_steps), name='targets')
self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')
# 对于中文,需要使用embedding层
# 英文字母没有必要用embedding层
if self.use_embedding is False:
self.lstm_inputs = tf.one_hot(self.inputs, self.num_classes)
else:
with tf.device("/cpu:0"):
embedding = tf.get_variable('embedding', [self.num_classes, self.embedding_size])
self.lstm_inputs = tf.nn.embedding_lookup(embedding, self.inputs)
def build_lstm(self):
# 创建单个cell并堆叠多层
def get_a_cell(lstm_size, keep_prob):
lstm = tf.nn.rnn_cell.BasicLSTMCell(lstm_size)
drop = tf.nn.rnn_cell.DropoutWrapper(lstm, output_keep_prob=keep_prob)
return drop
with tf.name_scope('lstm'):
cell = tf.nn.rnn_cell.MultiRNNCell(
[get_a_cell(self.lstm_size, self.keep_prob) for _ in range(self.num_layers)]
)
self.initial_state = cell.zero_state(self.num_seqs, tf.float32)
# 通过dynamic_rnn对cell展开时间维度
self.lstm_outputs, self.final_state = tf.nn.dynamic_rnn(cell, self.lstm_inputs, initial_state=self.initial_state)
# 通过lstm_outputs得到概率
seq_output = tf.concat(self.lstm_outputs, 1)
x = tf.reshape(seq_output, [-1, self.lstm_size])
with tf.variable_scope('softmax'):
softmax_w = tf.Variable(tf.truncated_normal([self.lstm_size, self.num_classes], stddev=0.1))
softmax_b = tf.Variable(tf.zeros(self.num_classes))
self.logits = tf.matmul(x, softmax_w) + softmax_b
self.proba_prediction = tf.nn.softmax(self.logits, name='predictions')
def build_loss(self):
with tf.name_scope('loss'):
y_one_hot = tf.one_hot(self.targets, self.num_classes)
y_reshaped = tf.reshape(y_one_hot, self.logits.get_shape())
loss = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=y_reshaped)
self.loss = tf.reduce_mean(loss)
def build_optimizer(self):
# 使用clipping gradients
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self.loss, tvars), self.grad_clip)
train_op = tf.train.AdamOptimizer(self.learning_rate)
self.optimizer = train_op.apply_gradients(zip(grads, tvars))
def train(self, batch_generator, max_steps, save_path, save_every_n, log_every_n):
with self.session as sess:
if not self.restored:
sess.run(tf.global_variables_initializer())
# Train network
new_state = sess.run(self.initial_state)
for x, y in batch_generator:
self.step += 1
start = time.time()
feed = {self.inputs: x,
self.targets: y,
self.keep_prob: self.train_keep_prob,
self.initial_state: new_state}
batch_loss, new_state, _ = sess.run([self.loss,
self.final_state,
self.optimizer],
feed_dict=feed)
end = time.time()
# control the print lines
if self.step % log_every_n == 0:
print('step: {}/{}... '.format(self.step, max_steps),
'loss: {:.4f}... '.format(batch_loss),
'{:.4f} sec/batch'.format((end - start)))
if (self.step % save_every_n == 0):
self.saver.save(sess, os.path.join(save_path, 'model'), global_step=self.step)
if self.step >= max_steps:
break
self.saver.save(sess, os.path.join(save_path, 'model'), global_step=self.step)
def sample(self, n_samples, prime, vocab_size):
samples = [c for c in prime]
sess = self.session
new_state = sess.run(self.initial_state)
preds = np.ones((vocab_size, )) # for prime=[]
for c in prime:
x = np.zeros((1, 1))
# 输入单个字符
# nai+v=e
x[0, 0] = c
feed = {self.inputs: x,
self.keep_prob: 1.,
self.initial_state: new_state}
preds, new_state = sess.run([self.proba_prediction, self.final_state],
feed_dict=feed)
c = pick_top_n(preds, vocab_size)
# 添加字符到samples中
samples.append(c)
# 不断生成字符,直到达到指定数目
for i in range(n_samples):
x = np.zeros((1, 1))
x[0, 0] = c
feed = {self.inputs: x,
self.keep_prob: 1.,
self.initial_state: new_state}
preds, new_state = sess.run([self.proba_prediction, self.final_state],
feed_dict=feed)
c = pick_top_n(preds, vocab_size)
samples.append(c)
return np.array(samples)
def load(self, checkpoint):
self.session = tf.Session()
self.saver.restore(self.session, checkpoint)
print('Restored from: {}'.format(checkpoint))
self.restored = True
def predict(self, n_samples, prime, vocab_size, depth=5):
samples = [c for c in prime]
sess = self.session
new_state = sess.run(self.initial_state)
preds = np.ones((vocab_size, )) # for prime=[]
for c in prime:
x = np.zeros((1, 1))
# 输入单个字符
x[0, 0] = c
feed = {self.inputs: x,
self.keep_prob: 1.,
self.initial_state: new_state}
preds, new_state = sess.run([self.proba_prediction, self.final_state],
feed_dict=feed)
# state: naiv
p = preds.copy()
p = p.reshape([p.shape[1]])
c = np.argsort(-p)[:5] # e ...
p.sort()
p = p[::-1][:5]
p = p / np.sum(p)
top = [c, p]
result = []
for i in range(5):
c = top[0][i] # e
p = top[1][i] # naiv
# pred:e state:naiv
generated = [c, ]
# generated:[e,]
for i in range(depth):
x = np.zeros((1, 1))
x[0, 0] = c
feed = {self.inputs: x,
self.keep_prob: 1.,
self.initial_state: new_state}
preds, new_state = sess.run([self.proba_prediction, self.final_state],
feed_dict=feed)
c = pick_top_n(preds, vocab_size, 1)
generated.append(c)
result.append([generated, p])
return result