forked from respec/HSPsquared
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPHCARB_Class.py
261 lines (215 loc) · 8.29 KB
/
PHCARB_Class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import numpy as np
from numpy import zeros, array
import numba as nb
from numba.typed import Dict
from numba.experimental import jitclass
from math import log10
from HSP2.ADCALC import advect
from HSP2.RQUTIL import benth
spec = [
('alk', nb.float64),
('alkcon', nb.int32),
('anaer', nb.float64),
('benco2', nb.float64),
('benrfg', nb.int32),
('brco2', nb.float64[:]),
('cfcinv', nb.float64),
('co2', nb.float64),
('conv', nb.float64),
('delt60', nb.float64),
('delth', nb.float64),
('delts', nb.float64),
('errors', nb.int64[:]),
('ico2', nb.float64),
('invco2', nb.float64),
('itic', nb.float64),
('ncons', nb.int32),
('nexits', nb.int32),
('oco2', nb.float64[:]),
('otic', nb.float64[:]),
('ph', nb.float64),
('phcnt', nb.int32),
('roco2', nb.float64),
('rotic', nb.float64),
('satco2', nb.float64),
('simlen', nb.int32),
('svol', nb.float64),
('tic', nb.float64),
('totco2', nb.float64),
('uunits', nb.int32),
('vol', nb.float64),
]
@jitclass(spec)
class PHCARB_Class:
#-------------------------------------------------------------------
# class initialization:
#-------------------------------------------------------------------
def __init__(self, siminfo, nexits, vol, ui_rq, ui_nutrx, ui, ts):
''' Initialize variables for pH, carbon dioxide, total inorganic carbon, and alkalinity '''
self.errors = zeros(int(ui['errlen']), dtype=np.int64)
delt60 = siminfo['delt'] / 60.0 # delt60 - simulation time interval in hours
self.delt60 = delt60
self.simlen = int(siminfo['steps'])
self.delts = siminfo['delt'] * 60
self.uunits = int(siminfo['units'])
self.nexits = int(nexits)
self.vol = vol
self.svol = self.vol
# inflow/outflow conversion factor:
if self.uunits == 2: # SI conversion: (g/m3)*(m3/ivld) --> [kg/ivld]
self.conv = 1.0e-3
else: # Eng. conversion: (g/m3)*(ft3/ivld) --> [lb/ivld]
self.conv = 6.2428e-5
# required values from other modules:
self.benrfg = int(ui_rq['BENRFG']) # via table-type benth-flag
self.anaer = int(ui_nutrx['ANAER'])
self.satco2 = -999.0
# flags - table-type ph-parm1
self.phcnt = int(ui['PHCNT']) # is the maximum number of iterations to pH solution.
self.alkcon = int(ui['ALKCON']) # ALKCON is the number of the conservative substance which is alkalinity.
ncons = int(ui_rq['NCONS'])
if self.alkcon > ncons:
self.errors[0] += 1
# ERRMSG: Invalid CONS index specified for ALKCON (i.e., ALKCON > NCONS).
# flags - table-type ph-parm2
self.cfcinv = ui['CFCINV']
self.brco2 = zeros(2)
for i in range(2):
self.brco2[i] = ui['BRCO2' + str(i+1)] * self.delt60
# table-type ph-init
self.tic = ui['TIC']
self.co2 = ui['CO2']
self.ph = ui['PH']
# initialize outflows:
self.roco2 = 0.0
self.rotic = 0.0
self.oco2 = zeros(nexits)
self.otic = zeros(nexits)
return
#-------------------------------------------------------------------
# simulation (single timestep):
#-------------------------------------------------------------------
def simulate(self, tw, OXRX, NUTRX, PLANK, phif1, phif2, alk, avdepe, scrfac, depcor, advectData):
''' simulate ph, carbon dioxide, total inorganic carbon, and alkalinity'''
# hydraulics:
(nexits, vols, vol, srovol, erovol, sovol, eovol) = advectData
self.vol = vol
# inflows: convert from [mass/ivld] to [conc.*vol/ivld]
self.itic = phif1 / self.conv
self.ico2 = phif2 / self.conv
# advect TIC:
(self.tic, self.rotic, self.otic) = \
advect(self.itic, self.tic, nexits, self.svol, self.vol, srovol, erovol, sovol, eovol)
# advect CO2:
(self.co2, self.roco2, self.oco2) = \
advect(self.ico2, self.co2, nexits, self.svol, self.vol, srovol, erovol, sovol, eovol)
if vol > 0.0:
twkelv = tw + 273.16
# convert tic, co2, and alk to molar concentrations for duration of phcarb section
self.tic = self.tic / 12000.0
self.co2 = self.co2 / 12000.0
self.alk = alk / 50000.0
if avdepe > 0.17:
if self.benrfg == 1: # simulate benthal release of co2
self.co2 *= 12000.0 # convert co2 to mg/l for use by benth
self.co2, self.benco2 = benth(OXRX.dox, self.anaer, self.brco2, scrfac, depcor, self.co2)
self.co2 /= 12000.0
else: # benthal release of co2 is not considered
self.benco2 = 0.0
# calculate molar saturation concentration for co2 (satco2); first, calculate
# henry's constant, s, for co2; s is defined as the molar concentration of
# atmospheric co2/partial pressure of co2; cfpres corrects the equation for
# effects of elevation differences from sea level
s = 10.0 ** ((2385.73 / twkelv) - 14.0184 + 0.0152642 * twkelv)
self.satco2 = 3.16e-04 * OXRX.cfpres * s
# calculate increase in co2 due to atmospheric invasion; the co2
# invasion is based on oxygen reaeration rate for the control volume
kcinv = min(self.cfcinv * OXRX.korea, 0.999)
inv = kcinv * (self.satco2 - self.co2)
self.invco2 = inv * 12000.0
# calculate net molar co2 change due to co2 invasion, zooplankton
# excretion and respiration, phytoplankton and benthic algae
# respiration, bod decay, and benthal release of co2
bodco2 = NUTRX.decco2
phyco2 = PLANK.pyco2
zooco2 = PLANK.zoco2
balco2 = PLANK.baco2
self.totco2 = self.invco2 + zooco2 + phyco2 + balco2 + bodco2 + self.benco2
deltcd = self.totco2 / 12000.0
# calculate change in total inorganic carbon balance due to net co2 change
self.tic = max(self.tic + deltcd, 0.0)
else:
# too little water to warrant simulation of quality processes; calculate
# values of co2 and ph state variables based on only longitudinal advection
self.invco2 = 0.0
zooco2 = 0.0
phyco2 = 0.0
balco2 = 0.0
bodco2 = 0.0
self.benco2 = 0.0
self.totco2 = 0.0 # invco2 + zooco2 + phyco2 + balco2 + bodco2 + benco2
# calculate ionization product of water
kwequ = 10.0 ** (-4470.99 / twkelv + 6.0875 - 0.01706 * twkelv)
# calculate first dissociation constant of carbonic acid
k1equ = 10.0 ** (-3404.71 / twkelv + 14.8435 - 0.032786 * twkelv)
# calculate second dissociation constant of carbonic acid
k2equ = 10.0 ** (-2902.39 / twkelv + 6.4980 - 0.02379 * twkelv)
# assign values to variables and coefficients used in the solution algorithm
if self.ph < 0.0: # it is undefined (due to no water in reach)
self.ph = 7.0
hest = 10.0 ** (-self.ph)
hllim = 0.0
hulim = 1.0
coeff1 = self.alk + k1equ
coeff2 = -kwequ + self.alk * k1equ + k1equ * k2equ - self.tic * k1equ
coeff3 = -2.0 * k1equ * k2equ * self.tic - k1equ * kwequ + self.alk * k1equ * k2equ
coeff4 = -k1equ * k2equ * kwequ
# $PHCALC() ''' calculate ph'''
count = 0
while count <= self.phcnt:
count = count + 1
# evaluate quadratic and slope for solution equation
quadh = (((hest + coeff1) * hest + coeff2) * hest + coeff3) * hest + coeff4
dfdh = ((4.0 * hest + 3.0 * coeff1) * hest + 2.0 * coeff2) * hest + coeff3
if dfdh <= 0.0: # slope of solution equation is zero or negative
# solution for hplus is not meaningful for such a slope
# update values for hllim, hulim, and hest to force convergence
if quadh < 0.0:
if hest >= hllim:
hllim = hest
hest = 10.0 * hest
elif hest <= hulim:
hulim = hest
hest = 0.10 * hest
else: # calculate new hydrogen ion concentration
hplus = hest - quadh / dfdh
if abs(hplus - hest) / hplus <= 0.10:
break
# adjust prior estimate for next iteration
if hplus <= hllim:
hest = (hest + hllim) / 2.0
elif hplus >= hulim:
hest = (hest + hulim) / 2.0
else:
hest = hplus
else:
self.errors[1] += 1 # ERRMSG: a satisfactory solution for ph has not been reached
self.ph = -log10(hplus)
# end #$PHCALC()
# calculate co2 concentration (molar)
self.co2 = self.tic / (1.0 + k1equ / hplus + k1equ * k2equ / (hplus ** 2))
# convert tic, co2, and alk from moles/liter to mg/liter
self.tic *= 12000.0
self.co2 *= 12000.0
self.alk *= 50000.0
else: # reach/res has gone dry during the interval; set ph equal to an undefined value
self.ph = -1.0e30
self.invco2 = 0.0
zooco2 = 0.0
phyco2 = 0.0
balco2 = 0.0
bodco2 = 0.0
self.benco2 = 0.0
self.totco2 = 0.0 # invco2 + zooco2 + phyco2 + balco2 + bodco2 + benco2
self.svol = self.vol # svol is volume at start of time step, update for next time thru
return