forked from respec/HSPsquared
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrestart.py
65 lines (52 loc) · 2.22 KB
/
restart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
''' Copyright (c) 2020 by RESPEC, INC.
Author: Robert Heaphy, Ph.D.
License: LGPL2
'''
from pandas import date_range, HDFStore, Timestamp
from pandas.tseries.offsets import Minute
states = {
('PERLND','SNOW') : ['COVINX','DULL','PACKF','PACKI','PACKW','PAKTMP','RDENPF','SKYCLR','XLNMLT'],
('IMPLND','SNOW') : ['COVINX','DULL','PACKF','PACKI','PACKW','PAKTMP','RDENPF','SKYCLR','XLNMLT'],
('PERLND','PWATER') : ['AGWS', 'CEPS', 'GWVS', 'IFWS', 'LZS', 'SURS', 'UZS'],
('IMPLND','IWATER') : ['RETS', 'SURS'],
('RCHRES', 'HYDR') : ['VOL']}
def restart(hdfname, newstart):
'''
Updates STATE values in HSP2 HDF file to start at later newstart date from
computed values. User can extend timeseries by predictive or historic data
to continue simulation. In this case, the user must set a new stop date!
Parameters
----------
hdfname : str
HSP2 HDF5 file.
newstart : str (in Datatime format for Timestamp)
DateTime for restarting the simulation.
Returns
-------
None.
'''
with HDFStore(hdfname) as store:
df = store['CONTROL/OP_SEQUENCE']
delt = df.loc[0,'INDELT_minutes']
df = store['CONTROL/GLOBAL']
start = Timestamp(df.loc['Start', 'Info'])
stop = Timestamp(df.loc['Stop', 'Info'])
dates = date_range(start, stop, freq=Minute(delt))
# deterime new start date for restart; previous date if not exact match
startindx = dates.get_loc(newstart, method='pad')
startdate = dates[startindx]
df.loc['Start', 'Info'] = str(startdate)
df.to_hdf(hdfname, 'CONTROL/GLOBAL', format='table', data_columns=True)
for path in [p[1:] for p in store.keys() if p.startswith('/RESULTS')]:
_, x, activity = path.split('/')
operation, segment = x.split('_')
if (operation, activity) not in states:
continue
df = store[path] [states[operation, activity]]
df = df.iloc[startindx, :].to_frame()
df.columns = [segment]
storepath = f'{operation}/{activity}/STATES'
dff = store[storepath]
dff.update(df.T)
dff.to_hdf(store, storepath, format='table', data_columns=True)
return