forked from MaximeHerpin/modular_tree
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodules.py
524 lines (431 loc) · 22 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
# The objective is to build a tree object whose all branches are connected. In other words, the tree is manifold.
# To do so, the tree is generated as a succession of modules that can represent splits, stems and so on.
# The modules are objects from the class Module.
# Each module has a resolution, except the modules that make the junction between two different levels of subdivision
import bpy, bmesh
import numpy as np
from mathutils import Vector, Matrix
from math import pi, sqrt, cos, sin
from .bridge import bridge
from random import random
def square(size):
"""Returns a list of 4 vectors arranged in a square of specified size"""
return [Vector((-1, -1, 0))*size, Vector((1, -1, 0))*size, Vector((1, 1, 0))*size, Vector((-1, 1, 0))*size]
def octagon(size):
result = []
for i in range(8):
angle = pi*i/4
result.append(Vector((cos(angle), sin(angle), 0)) * size)
return result
def directions_to_spin(direction, secondary_direction):
direction_rotation = Vector((0,0,1)).rotation_difference(direction).to_matrix()
secondary_direction = secondary_direction * direction_rotation
spin = - secondary_direction.xy.angle_signed(Vector((-1, 0)))
return spin
def get_direction(primary_direction, angle, spin):
rot_1 = Matrix.Rotation(angle, 4, 'Y')
rot_2 = primary_direction.rotation_difference(Vector((0,0,1))).to_matrix()
rot_3 = Matrix.Rotation(spin, 4, 'Z')
direction = ((rot_1 * Vector((0, 0, 1))) * rot_3) * rot_2
return direction
def average_vector(vectors):
"""returns the average vector of a list of vectors"""
v = sum(vectors, Vector())
v /= len(vectors)
return v
def find_verts_number_rec(module):
if module is None:
return 0
if module.type == 'root' or module.type == 'branch':
return 4 + find_verts_number_rec(module.head_module_1)
if module.type == 'split':
return 8 + find_verts_number_rec(module.head_module_1) + find_verts_number_rec(module.head_module_2)
def find_faces_number_rec(module):
if module is None:
return 1
if module.type == 'root':
return find_faces_number_rec(module.head_module_1)
if module.type == 'branch':
return 4 + find_faces_number_rec(module.head_module_1)
if module.type == 'split':
return 7 + find_faces_number_rec(module.head_module_1) + find_faces_number_rec(module.head_module_2)
def draw_module(root, resolution_levels, twig=False):
max_radius = root.base_radius
root.resolution = resolution_levels
apply_resolution_rec(root.head_module_1, resolution_levels, max_radius, root)
verts = [[] for i in range(resolution_levels+1)]
faces = [[] for i in range(resolution_levels+1)]
uvs = [[] for i in range(resolution_levels+1)]
v_groups = [[] for i in range(resolution_levels+1)]
root.build()
verts[-1] = [v for v in root.verts]
extremities = [root]
while len(extremities) > 0:
new_extremities = []
for module in extremities:
for head in range(module.head_number):
new_module = module.head_module_1 if head == 0 else module.head_module_2
if new_module is not None:
resolution = new_module.resolution
curr_verts_number = len(verts[resolution])
module.link(new_module, head, curr_verts_number)
verts[resolution].extend(new_module.verts)
faces[resolution].extend(new_module.faces)
uvs[resolution].extend(new_module.uvs)
v_groups[resolution].append((list(range(curr_verts_number, curr_verts_number+len(new_module.verts))), new_module.base_radius / max_radius))
new_extremities.append(new_module)
extremities = new_extremities
objects = []
for i in range(resolution_levels+1):
bpy.ops.object.select_all(action='DESELECT')
name = "twig" if twig else "tree"
mesh = bpy.data.meshes.new(name)
bm = bmesh.new()
bm.from_mesh(mesh)
for v in verts[i]:
bm.verts.new(v)
bm.verts.ensure_lookup_table()
for f in faces[i]:
try:
bm.faces.new([bm.verts[j] for j in f])
except:
print(f)
bm.faces.ensure_lookup_table()
bm.loops.layers.uv.new()
uv_layer = bm.loops.layers.uv.active
for index, face in enumerate(bm.faces):
for j, loop in enumerate(face.loops):
loop[uv_layer].uv = uvs[i][index][j]
bm.to_mesh(mesh)
bm.free()
obj = bpy.data.objects.new(name, mesh)
obj.location = bpy.context.scene.cursor_location
vg = obj.vertex_groups.new("radius")
for weights in v_groups[i]:
vg.add(weights[0], weights[1], 'REPLACE')
bpy.context.scene.objects.link(obj)
bpy.context.scene.objects.active = obj
if not twig:
obj["is_tree"] = True
obj["tree_type"] = "object"
obj.select = True
bpy.ops.object.mode_set(mode='EDIT')
bpy.ops.mesh.select_all(action='SELECT')
bpy.ops.mesh.normals_make_consistent(inside=False)
bpy.ops.object.mode_set(mode='OBJECT')
bpy.ops.object.subdivision_set(level=i)
print(i)
objects.append(obj)
for o in objects:
o.select = True
bpy.ops.object.convert(target='MESH')
bpy.ops.object.join()
bridge(bpy.context.object)
def visualize_with_curves(root):
curve_data = bpy.data.curves.new('Tree', type='CURVE')
curve_data.dimensions = '3D'
polyline = curve_data.splines.new('POLY')
x, y, z = root.position
polyline.points[0].co = (x, y, z, 1)
polyline.points[0].radius = root.base_radius
draw_curve_rec(root, polyline, curve_data)
curveOB = bpy.data.objects.new('Tree', curve_data)
curveOB.location = bpy.context.scene.cursor_location
curve_data.bevel_depth = 1
curve_data.bevel_resolution = 0
curve_data.fill_mode = 'FULL'
scene = bpy.context.scene
scene.objects.link(curveOB)
scene.objects.active = curveOB
curveOB["is_tree"] = True
curveOB["tree_type"] = "curve"
curveOB.select = True
def draw_curve_rec(module, polyline, curve_data):
if module is not None:
polyline.points.add(1)
x,y,z = module.position
polyline.points[-1].co = (x, y, z, 1)
polyline.points[-1].radius = module.base_radius
draw_curve_rec(module.head_module_1, polyline, curve_data)
if module.type == 'split' and module.head_module_2 is not None:
new_polyline = curve_data.splines.new('POLY')
# new_polyline.points.add(1)
new_polyline.points[0].co = (x, y, z, 1)
new_polyline.points[0].radius = module.base_radius
draw_curve_rec(module.head_module_2, new_polyline, curve_data)
def roll_indexes(indexes, angle_diff):
""" shift a list according to an angle between two squares so that the indexes are aligned"""
shift = int(4*angle_diff/pi)%8
shifts = np.array([0, -1, -1, -2, -2, -3, -3, 0, 0, 0])
shift = shifts[shift]
return np.roll(indexes, -shift)
def apply_resolution_rec(module, resolution_levels, max_radius, parent):
resolution = max(parent.resolution - 1, int(resolution_levels * module.base_radius / max_radius +.6))
if module.type == 'branch' and parent.type == 'branch':
module.resolution = resolution
if resolution < parent.resolution:
# transition = Transition(module.position, module.direction, module.base_radius, module.length, module.head_1_radius, resolution, module.starting_index, module.spin)
# if parent.head_module_2 == module:
# parent.head_module_2 = transition
# else:
# parent.head_module_1 = transition
# transition.head_module_1 = module.head_module_1
# transition.head_module_2 = module.head_module_2
# module = transition
module.direction = parent.direction
module.draw_base = True
else:
module.resolution = parent.resolution
if module.head_module_1 is not None:
apply_resolution_rec(module.head_module_1, resolution_levels, max_radius, module)
if module.head_module_2 is not None:
apply_resolution_rec(module.head_module_2, resolution_levels, max_radius, module)
class Module:
def __init__(self, position, direction, radius, resolution, starting_index, spin):
self.verts = np.array([])
self.faces = np.array([])
self.uvs = np.array([])
self.uv_height = 0
self.type = 'module'
self.creator = "default"
self.position = position
self.direction = direction
self.base_radius = radius
self.resolution = resolution
self.spin = spin
self.starting_index = starting_index
# self.base_pos = []
self.head_module_1 = None
self.head_module_2 = None
def draw(self):
mesh = bpy.data.meshes.new(self.type)
bm = bmesh.new()
bm.from_mesh(mesh)
for v in self.verts:
bm.verts.new(v)
bm.verts.ensure_lookup_table()
for f in self.faces:
bm.faces.new([bm.verts[i] for i in f])
bm.to_mesh(mesh)
bm.free()
obj = bpy.data.objects.new(self.type, mesh)
obj.location = Vector((0, 0, 0))
bpy.context.scene.objects.link(obj)
bpy.context.scene.objects.active = obj
obj.select = True
def get_faces(self, starting_index=0):
return [tuple([i + starting_index for i in f]) for f in self.faces]
def get_head_direction(self, head):
return self.direction
def get_extremities_rec(self, curr_extremities, selection):
is_selected = selection == [] or self.creator in selection
if self.head_module_1 is None:
if is_selected:
curr_extremities.append((self, 0))
else:
self.head_module_1.get_extremities_rec(curr_extremities, selection)
if self.head_module_2 is None:
if self.type == 'split' and is_selected:
curr_extremities.append((self, 1))
else:
self.head_module_2.get_extremities_rec(curr_extremities, selection)
def __repr__(self):
if self.type == 'split':
return str(self.type) + " " + str(self.position.to_tuple(2)) + " " + self.head_module_1.__repr__() + self.head_module_2.__repr__()
else:
return str(self.type) + " " + str(self.position.to_tuple(2)) + " " + self.head_module_1.__repr__()
class Split(Module):
def __init__(self, position=Vector(), direction=Vector(), radius=1, resolution=0, starting_index=0, spin=0, head_2_length=1, head_2_radius=.6):
Module.__init__(self,position, direction, radius, resolution, starting_index, spin)
self.type = 'split'
self.head_1_radius = .99 * self.base_radius
self.head_2_radius = head_2_radius * self.base_radius
self.primary_angle = pi/18
self.secondary_angle = pi/4
self.head_1_length = self.base_radius * 3
self.head_2_length = head_2_length
self.head_number = 2
self.head_1_direction = Vector()
self.head_2_direction = Vector()
# self.build()
# self.draw()
def get_head_indexes(self, head):
if head == 1:
return [self.starting_index + i for i in range(4)]
else:
return [self.starting_index + 4 + i for i in range(4)]
def get_head_pos(self, head):
if head==0:
direction = self.get_head_direction(0)
return self.position + direction * self.head_1_length
elif head==1:
direction = self.get_head_direction(1)
return self.position + direction * self.head_2_length
def get_head_direction(self, head):
if head == 0:
return get_direction(self.direction, self.primary_angle, self.spin)
else:
return get_direction(self.direction, self.primary_angle - self.secondary_angle, self.spin)
def build(self, base_indexes=range(4)):
radius_correction = 1 - .25**(self.resolution+1)
self.base_radius *= radius_correction
self.head_1_radius *= radius_correction
self.head_2_radius *= radius_correction
uv_height = self.uv_height
v2 = square(self.head_1_radius)
v3 = square(self.head_2_radius)
primary_rotation = Matrix.Rotation(self.primary_angle, 4, 'Y')
secondary_rotation = Matrix.Rotation(self.primary_angle - self.secondary_angle, 4, 'Y')
v2 = [primary_rotation * (v + Vector((0, 0, self.head_1_length))) for v in v2]
v3 = [secondary_rotation * (v + Vector((0, 0, self.head_2_length))) for v in v3]
self.verts = v2 + v3
si = self.starting_index
i0, i1, i2, i3 = base_indexes
faces = [(i0, si, si + 1, i1), (i1, si + 1, si + 2, i2), (i2, si + 2, si + 3, i3), (i3, si+3, si+6, si+7), (si+4, si+5, si, i0), (si+6, si+3, si, si+5), (i3, si+7, si+4, i0)]
spin_rotation = Matrix.Rotation(self.spin, 4, 'Z')
direction_rotation = self.direction.rotation_difference(Vector((0,0,1))).to_matrix()
self.verts = [((v * spin_rotation) * direction_rotation) + self.position for v in self.verts]
self.head_1_direction = (self.verts[-5] + self.verts[-7])/2 - self.position
self.head_2_direction = (self.verts[-1] + self.verts[-3])/2 - self.position
self.verts = np.asarray([i.to_tuple() for i in self.verts])
# self.base_pos = [(v * spin_rotation) * direction_rotation + self.position for v in square(self.base_radius)]
uvs = [[(i / 4, uv_height), (i / 4, uv_height + .1*self.head_1_length / self.head_1_radius), ((i + 1) / 4, uv_height + .1*self.head_1_length / self.head_1_radius), ((i + 1) / 4, uv_height)] for i in range(3)]
uvs.extend([[(i / 4, uv_height), (i / 4, uv_height + .1*self.head_2_length / self.head_2_radius), ((i + 1) / 4, uv_height + .1*self.head_2_length / self.head_2_radius), ((i + 1) / 4, uv_height)] for i in range(4)])
if self.head_module_1 is None:
faces.append([i for i in range(si, si+4)])
uvs.append([(0, 0), (0, 1), (1, 1), (1, 0)])
if self.head_module_2 is None:
faces.append([i for i in range(si+4, si + 8)])
uvs.append([(0, 0), (0, 1), (1, 1), (1, 0)])
self.faces = np.asarray(faces)
self.uvs = np.asarray(uvs)
def link(self, module, head, verts_number):
if head ==0:
head_indexes = np.arange(self.starting_index, self.starting_index + 4)
else:
head_indexes = np.arange(self.starting_index+4, self.starting_index + 8)
module.starting_index = verts_number
spin_diff = (module.spin - self.spin) % (2*pi)
module.build(roll_indexes(head_indexes, spin_diff))
class Branch(Module):
def __init__(self, position=Vector(), direction=Vector, radius=1, length=1, head_radius=.95, resolution=0,
starting_index=0, spin=0):
Module.__init__(self, position, direction, radius, resolution, starting_index, spin)
self.type = "branch"
self.length = length
self.head_1_radius = head_radius * self.base_radius
self.head_number = 1
self.draw_base = False
# self.build()
# self.draw()
def get_head_indexes(self, head):
if head == 1:
return np.arange(4) + self.starting_index
def get_head_pos(self, head):
return self.position + self.direction * self.length
def build(self, base_indexes=np.arange(4)):
radius_correction = 1 - .25**(self.resolution+1)
self.base_radius *= radius_correction
self.head_1_radius *= radius_correction
uv_height = self.uv_height
v2 = [v + Vector((0,0, self.length)) for v in square(self.head_1_radius)]
if self.draw_base:
v2.extend([v + Vector((0,0, 0*self.length/4)) for v in square(self.base_radius)])
self.verts = v2
i0, i1, i2, i3 = base_indexes
si = self.starting_index
if self.draw_base:
i0, i1, i2, i3 = [si + 4 + i for i in range(4)]
spin_rotation = Matrix.Rotation(self.spin, 4, 'Z')
direction_rotation = self.direction.rotation_difference(Vector((0, 0, 1))).to_matrix()
self.verts = np.asarray([((v * spin_rotation) * direction_rotation + self.position).to_tuple() for v in self.verts])
# self.base_pos = [(v * spin_rotation) * direction_rotation + self.position for v in square(self.base_radius)]
m = min(base_indexes)
faces = [(i0, si, si + 1, i1), (i1, si + 1, si + 2, i2), (i2, si + 2, si + 3, i3), (i3, si + 3, si, i0)]
uvs = [[(i/4, uv_height), (i/4, uv_height + .1*self.length/self.base_radius), ((i+1)/4, uv_height + .1*self.length/self.base_radius), ((i+1)/4, uv_height)] for i in range(4)]
if self.head_module_1 is None:
faces.append([i for i in range(si, si+4)])
uvs.append([(0, 0), (0, 1), (1, 1), (1, 0)])
self.faces = np.asarray(faces)
self.uvs = np.asarray(uvs)
def link(self, module, head, verts_number):
# module.position = (self.verts[0] + self.verts[2])/2
# module.base_radius = self.head_1_radius
# module.direction = self.direction
module.starting_index = verts_number
# self.head_module_1 = module
n = len(self.verts)
head_indexes = np.arange(4) + self.starting_index
spin_diff = module.spin - self.spin
module.uv_height = self.uv_height + .1*self.length/self.base_radius
module.build(roll_indexes(head_indexes, spin_diff))
# base_verts = roll_indexes(module.base_pos, spin_diff)
# for i in range(4):
# self.verts[i] = self.verts[i]*.7 + base_verts[i]*.3
class Root(Module):
def __init__(self, position=Vector(), direction=Vector, radius=1, resolution=0, starting_index=0, spin=0):
Module.__init__(self, position, direction, radius, resolution, starting_index, spin)
self.type = "root"
self.head_number = 1
self.head_1_radius = self.base_radius
self.density_dict = dict()
def build(self):
spin_rotation = Matrix.Rotation(self.spin, 4, 'Z')
direction_rotation = self.direction.rotation_difference(Vector((0, 0, 1))).to_matrix()
self.verts = np.asarray([((v * spin_rotation) * direction_rotation + self.position).to_tuple() for v in square(self.base_radius)])
def get_head_pos(self, head):
return self.position
def link(self, module, head, verts_number):
module.starting_index = verts_number
spin_diff = module.spin - self.spin
head_indexes = np.arange(4)
module.uv_height = 0
module.build(roll_indexes(head_indexes, spin_diff))
class Transition(Module):
def __init__(self, position=Vector(), direction=Vector(), radius=1, length=1, head_radius=.95, resolution=0, starting_index=0, spin=0 ):
Module.__init__(self, position, direction, radius, resolution, starting_index, spin)
self.type = "transition"
self.head_1_radius = head_radius
self.length = length
self.head_number = 1
# print('transition')
def build(self, base_indexes=None, create_base=False):
v1 = octagon(self.base_radius)
radius_correction = 1 - .25 ** (self.resolution + 1)
self.base_radius *= radius_correction
self.head_1_radius *= radius_correction
v2 = [v + Vector((0,0, self.length)) for v in square(self.base_radius)]
# v3 = [v * self.head_1_radius + Vector((0, 0, self.length/2)) for v in [Vector((-1, -.5, 0)), Vector((1, -.5, 0)), Vector((1, .5, 0)), Vector((-1, .5, 0))]]
verts = v1 + v2
faces = np.array([[0, 1, 14, 13], [1, 2, 10, 14], [2, 3, 11, 10], [3, 4, 15, 11], [4, 5, 12, 15], [5, 6, 8, 12], [6, 7, 9, 8], [7, 0, 13, 9], [13, 14, 10, 9], [15, 12, 8, 11]])
faces = [[0, 1, 10, 9], [1,2,10], [2,3,11,10], [3,4,11], [4,5,8,11], [5,6,8], [6,7,9,8], [7,0,9]]
# faces = np.array([[0, 1, 14, 13]])
# self.faces = faces + self.starting_index
self.faces = [tuple([i + self.starting_index for i in j]) for j in faces]
# verts = [Vector(i) * self.base_radius for i in [(-0.37, 0.9, 0.0), (-0.9, 0.37, 0.0), (-0.9, -0.37, 0.0),
# (-0.37, -0.9, 0.0), (0.37, -0.9, 0.0), (0.9, -0.37, -0.0),
# (0.9, 0.37, 0.0), (0.37, 0.9, 0.0), (-0.9, -0.9, 1.38),
# (0.9, -0.9, 1.38),
# (0.9, 0.9, 1.38), (-0.9, 0.9, 1.38), (-0.93, 0.42, 0.84),
# (-0.93, -0.42, 0.84), (0.93, -0.42, 0.84), (0.93, 0.42, 0.84)]]
#
# f = [tuple([i + self.starting_index for i in j]) for j in [[6, 15, 14, 5], [2, 13, 12, 1], [8, 13, 2, 3],
# [11, 12, 13, 8], [0, 1, 12, 11], [14, 9, 4, 5],
# [10, 9, 14, 15], [6, 7, 10, 15], [4, 9, 8, 3],
# [0, 11, 10, 7]]]
spin_rotation = Matrix.Rotation(self.spin, 4, 'Z')
direction_rotation = self.direction.rotation_difference(Vector((0, 0, 1))).to_matrix()
self.verts = np.asarray([((v * spin_rotation) * direction_rotation + self.position).to_tuple() for v in verts])
def link(self, module, head, verts_number):
# module.position = (self.verts[0] + self.verts[2])/2
# module.base_radius = self.head_1_radius
# module.direction = self.direction
module.starting_index = verts_number
# self.head_module_1 = module
head_indexes = np.arange(4) + self.starting_index + 8
spin_diff = module.spin - self.spin
module.uv_height = self.uv_height + .1*self.length/self.base_radius
module.build(roll_indexes(head_indexes, spin_diff))
# base_verts = roll_indexes(module.base_pos, spin_diff)
# for i in range(4):
# self.verts[i] = self.verts[i]*.7 + base_verts[i]*.3