-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgd_eval.py
279 lines (214 loc) · 10.2 KB
/
gd_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
"""
该脚本用于调用训练好的模型权重去计算验证集/测试集的COCO指标
以及每个类别的mAP(IoU=0.5)
"""
from json.decoder import JSONDecodeError
import os
import json
import torch
from tqdm import tqdm
import numpy as np
from data import *
from data.transforms import *
from data.gdgrid import *
from utils.augmentations import SSDAugmentation
from utils.util_init import *
from layers.modules import MultiBoxLoss
from ssd import build_ssd
import os
from train_utils import get_coco_api_from_dataset, CocoEvaluator
def summarize(self, catId=None):
"""
Compute and display summary metrics for evaluation results.
Note this functin can *only* be applied on the default parameter setting
"""
def _summarize(ap=1, iouThr=None, areaRng='all', maxDets=100):
p = self.params
iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}'
titleStr = 'Average Precision' if ap == 1 else 'Average Recall'
typeStr = '(AP)' if ap == 1 else '(AR)'
iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \
if iouThr is None else '{:0.2f}'.format(iouThr)
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
if ap == 1:
# dimension of precision: [TxRxKxAxM]
s = self.eval['precision']
# IoU
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
if isinstance(catId, int):
s = s[:, :, catId, aind, mind]
else:
s = s[:, :, :, aind, mind]
else:
# dimension of recall: [TxKxAxM]
s = self.eval['recall']
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
if isinstance(catId, int):
s = s[:, catId, aind, mind]
else:
s = s[:, :, aind, mind]
if len(s[s > -1]) == 0:
mean_s = -1
else:
mean_s = np.mean(s[s > -1])
print_string = iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s)
return mean_s, print_string
stats, print_list = [0] * 12, [""] * 12
stats[0], print_list[0] = _summarize(1)
stats[1], print_list[1] = _summarize(1, iouThr=.5, maxDets=self.params.maxDets[2])
stats[2], print_list[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2])
stats[3], print_list[3] = _summarize(1, areaRng='small', maxDets=self.params.maxDets[2])
stats[4], print_list[4] = _summarize(1, areaRng='medium', maxDets=self.params.maxDets[2])
stats[5], print_list[5] = _summarize(1, areaRng='large', maxDets=self.params.maxDets[2])
stats[6], print_list[6] = _summarize(0, maxDets=self.params.maxDets[0])
stats[7], print_list[7] = _summarize(0, maxDets=self.params.maxDets[1])
stats[8], print_list[8] = _summarize(0, maxDets=self.params.maxDets[2])
stats[9], print_list[9] = _summarize(0, areaRng='small', maxDets=self.params.maxDets[2])
stats[10], print_list[10] = _summarize(0, areaRng='medium', maxDets=self.params.maxDets[2])
stats[11], print_list[11] = _summarize(0, areaRng='large', maxDets=self.params.maxDets[2])
print_info = "\n".join(print_list)
if not self.eval:
raise Exception('Please run accumulate() first')
return stats, print_info
def main(parser_data):
device = torch.device(parser_data.use_cuda if torch.cuda.is_available() else "cpu")
print("Using {} device training.".format(device.type))
data_transform = {
"val": transforms.Compose([transforms.ToTensor()])
}
# read class_indict
label_json_path = './dianwang_classes.json'
assert os.path.exists(label_json_path), "json file {} dose not exist.".format(label_json_path)
json_file = open(label_json_path, 'r')
class_dict = json.load(json_file)
category_index = {v: k for k, v in class_dict.items()}
dataset_root = parser_data.data_path
"""
# check voc root
if os.path.exists(os.path.join(VOC_root, "VOCdevkit")) is False:
raise FileNotFoundError("VOCdevkit dose not in path:'{}'.".format(VOC_root))
"""
# 注意这里的collate_fn是自定义的,因为读取的数据包括image和targets,不能直接使用默认的方法合成batch
batch_size = parser_data.batch_size
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
print('Using %g dataloader workers' % nw)
# load validation data set
val_dataset = DwDataset(dataset_root, data_transform["val"], "val.txt")
val_dataset_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=nw,
pin_memory=True,
collate_fn=val_dataset.collate_fn)
# val_dataset = DwDataset(args.dataset_root,
# compose_transforms,
# "val.txt")
# val_dataset_loader = data.DataLoader(valset, args.batch_size,
# # num_workers=args.num_workers,
# shuffle=False,
# collate_fn=valset.collate_fn,
# pin_memory=False)
# create model num_classes equal background + 20 classes
# 注意,这里的norm_layer要和训练脚本中保持一致
num_classes = len(category_index) + 1 # +1 for background
model = build_ssd('test', 300, num_classes) # initialize SSD
# 载入你自己训练好的模型权重
model.load_state_dict(torch.load(args.trained_model))
print('Finished loading model!')
# print(model)
model.to(device)
# evaluate on the test dataset
coco = get_coco_api_from_dataset(val_dataset)
iou_types = ["bbox"]
coco_evaluator = CocoEvaluator(coco, iou_types)
cpu_device = torch.device("cpu")
model.eval()
with torch.no_grad():
for image, targets in tqdm(val_dataset_loader, desc="validation..."):
if args.use_cuda and torch.cuda.is_available():
image = Variable(image.cuda())
# targets = [Variable(ann.cuda(), volatile=True) for ann in targets]
else:
image = Variable(image)
# targets = [Variable(ann, volatile=True) for ann in targets]
# 将图片传入指定设备device
# image = list(img.to(device) for img in image)
# inference
print('+++++++++++', image.size())
outputs = model(image)
outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
res = {target["image_id"].item(): output for target, output in zip(targets, outputs)}
for i in range(len(outputs)):
jsontext = {'image_id': targets[i]['image_id'].item(), 'objs':[]}
for j in range(len(outputs[i]["labels"])):
bbox, label, score = outputs[i]["boxes"][j], outputs[i]["labels"][j], outputs[i]["scores"][j]
obj_dict = {"label":label.numpy().tolist(), "bbox":bbox.numpy().tolist(), "score":score.numpy().tolist()}
jsontext["objs"].append(obj_dict)
jsondata = json.dumps(jsontext, indent=4, separators=(',', ': '))
with open("./pred_results/img" + str(targets[i]['image_id'].item()) + ".json",'w') as f:
f.write(jsondata)
coco_evaluator.update(res)
coco_evaluator.synchronize_between_processes()
# accumulate predictions from all images
coco_evaluator.accumulate()
coco_evaluator.summarize()
coco_eval = coco_evaluator.coco_eval["bbox"]
# calculate COCO info for all classes
coco_stats, print_coco = summarize(coco_eval)
# calculate voc info for every classes(IoU=0.5)
voc_map_info_list = []
for i in range(len(category_index)):
stats, _ = summarize(coco_eval, catId=i)
voc_map_info_list.append(" {:15}: {}".format(category_index[i + 1], stats[1]))
print_voc = "\n".join(voc_map_info_list)
print(print_voc)
# 将验证结果保存至txt文件中
with open("record_mAP.txt", "w") as f:
record_lines = ["COCO results:",
print_coco,
"",
"mAP(IoU=0.5) for each category:",
print_voc]
f.write("\n".join(record_lines))
def reinfer(img):
boxes = img["boxes"]
labels = img["labels"]
scores = img["scores"]
keep = {}
bage_idxs = torch.where(labels==1)[0]
offground_idxs = torch.where(labels==2)[0]
ground_idxs = torch.where(labels==3)[0]
safebelt_idxs = torch.where(labels==4)[0]
# offground ground 互斥
for offground_idx in offground_idxs:
for ground_idx in ground_idxs:
offground_box = boxes[offground_idx.item()]
ground_box = boxes[ground_idx.item()]
# count iou
# if iou
pass
def get_iou(box1, score1, box2, score2):
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description=__doc__)
# 使用设备类型
parser.add_argument('--use_cuda', default='cuda', help='device')
# # 检测目标类别数
# parser.add_argument('--num-classes', type=int, default='20', help='number of classes')
# 数据集的根目录(VOCdevkit)
parser.add_argument('--data-path', default='/home/qingren/Project/Tianchi_dw/Dataset', help='dataset root')
# 训练好的权重文件
parser.add_argument('--trained_model', default='checkpoints/model-70.pkl', type=str, help='training weights')
# batch size
parser.add_argument('--batch_size', default=1, type=int, metavar='N',
help='batch size when validation.')
args = parser.parse_args()
main(args)