forked from XXDIL/Paddy-Quality-Classifier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper_functions
36 lines (23 loc) · 1.16 KB
/
helper_functions
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#
for i in range(1, 21):
img = cv2.imread('images/bad_grain/' + str(i) + '.jpg', 0)
img = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)
cv2.imwrite('images/bad_grain/'+ str(21 + 3*(i-1)) + '.jpg', img)
img = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)
cv2.imwrite('images/bad_grain/'+ str(22 + 3*(i-1)) + '.jpg', img)
img = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)
cv2.imwrite('images/bad_grain/'+ str(23 + 3*(i-1)) + '.jpg', img)
----------------------------------------------------------------------------------------------------------
# Resizing the Images
img = cv2.imread('images/10.jpg', 0)
half = cv2.resize(img, (0, 0), fx = 0.2, fy = 0.2)
cv2.imwrite('images/10.jpg', half)
----------------------------------------------------------------------------------------------------------
# change the file names to sequences and resize it to 500 500
import os
path = 'dataset/dataset_bad90%/'
arr = os.listdir(path)
for i in range(1, len(arr)+1):
img = cv2.imread(path+arr[i-1], 1)
stretch_near = cv2.resize(img, (500, 500), interpolation = cv2.INTER_NEAREST)
cv2.imwrite('dataset/bad_90%/'+str(i)+'.jpg', stretch_near)