-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfactory_organize_classes.py
81 lines (66 loc) · 3.21 KB
/
factory_organize_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from constants import *
class FactoryOrganize:
@staticmethod
def get_dataset(dataset_configs, configs, train=True):
try:
transform_type = list(dataset_configs.values())[0]["transform"]
if transform_type:
transformations_configs = configs["transformation"]
transfomations = FACTORY_DICT["transformation"][transform_type](
**transformations_configs[transform_type]
)
list(dataset_configs.values())[0]["transform"] = transfomations.get_transformations(train)
except:
pass
dataset = FACTORY_DICT["dataset"][list(dataset_configs)[0]](
**dataset_configs[list(dataset_configs.keys())[0]]
)
return dataset
@staticmethod
def set_samples_dataset(configs, samples, type_dataset='train_dataset', key_data="path_data"):
configs[type_dataset][list(configs[type_dataset].keys())[0]][key_data] = samples
return configs
@staticmethod
def set_length_dataset(configs, len_, type_dataset='train_dataset', key_data="length_dataset"):
configs[type_dataset][list(configs[type_dataset].keys())[0]][key_data] = len_
return configs
@staticmethod
def get_workers(dataset_configs):
configs = dataset_configs[list(dataset_configs.keys())[0]]
return configs["num_workers"]
@staticmethod
def experiment_factory(configs):
train_dataset_configs = configs["train_dataset"]
validation_dataset_configs = configs["valid_dataset"]
model_configs = configs["model"]
optimizer_configs = configs["optimizer"]
criterion_configs = configs["loss"]
# Construct the dataloaders with any given transformations (if any)
train_dataset = FactoryOrganize.get_dataset(train_dataset_configs, configs, True)
validation_dataset = FactoryOrganize.get_dataset(validation_dataset_configs, configs, False)
train_workers = FactoryOrganize.get_workers(train_dataset_configs)
valid_workers = FactoryOrganize.get_workers(validation_dataset_configs)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=configs["train"]["batch_size"], shuffle=True,
num_workers=train_workers
)
validation_loader = torch.utils.data.DataLoader(
validation_dataset, batch_size=configs["valid"]["batch_size"], shuffle=False,
num_workers=valid_workers
)
# Build model
if type(dict(model_configs)) == dict: # incoerencia
model = FACTORY_DICT["model"][list(model_configs.keys())[0]](
**model_configs[list(model_configs.keys())[0]]
)
else:
model = FACTORY_DICT["model"][model_configs]()
optimizer = FACTORY_DICT["optimizer"][list(optimizer_configs.keys())[0]](
model.parameters(), **optimizer_configs[list(optimizer_configs.keys())[0]]
)
criterion = FACTORY_DICT["loss"][list(criterion_configs.keys())[0]]
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode='min'
)
return model, train_loader, validation_loader, optimizer, \
criterion, scheduler