-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
345 lines (253 loc) · 11.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
"""
Maintainer: Gabriel Dias ([email protected])
Mateus Oliveira ([email protected])
Marcio Almeida ([email protected])
"""
import argparse
import gc
import os
import random
import shutil
import wandb
from tqdm import trange
from constants import *
from lr_scheduler import CustomLRScheduler
from utils import read_yaml, clean_directory
from metrics import calculate_metrics
from plot_metrics import PlotMetrics
from basis_and_generator import transform_frequency, signal_reconstruction
from basis_and_generator import ReadDataSpectrum
plot_metrics = PlotMetrics()
def valid_on_the_fly(model, epoch, configs, basis_set_path, save_dir_path):
model.eval()
val_dataset_configs = configs["valid_dataset"]
val_dataset = FACTORY_DICT["dataset"][list(val_dataset_configs)[0]](
**val_dataset_configs[list(val_dataset_configs.keys())[0]])
random_index = random.randint(0, len(val_dataset) - 1)
val_path_dataset = val_dataset_configs[list(val_dataset_configs.keys())[0]]['path_data']
list_val_data = sorted(os.listdir(val_path_dataset))
list_val_data = [os.path.join(val_path_dataset, file) for file in list_val_data]
input_spec = ReadDataSpectrum.load_txt_spectrum([fid_txt for fid_txt in list_val_data if ".txt" in fid_txt][random_index])
spectrogram_3ch, labels = val_dataset[random_index]
spectrogram_3ch = torch.unsqueeze(spectrogram_3ch, dim=0).to(DEVICE)
prediction = model(spectrogram_3ch)
prediction = prediction.detach().cpu().numpy().squeeze()
labels = labels.numpy()
pred_fid = signal_reconstruction(basis_set_path, list(prediction))
truth_fid = signal_reconstruction(basis_set_path, list(labels))
pred_spec, ground_spec, ppm = transform_frequency(pred_fid, truth_fid)
os.makedirs(save_dir_path, exist_ok=True)
os.makedirs(os.path.join(save_dir_path, "input_ground"), exist_ok=True)
os.makedirs(os.path.join(save_dir_path, "pred_ground"), exist_ok=True)
PlotMetrics.spectrum_comparison(input_spec, ground_spec, ppm,
label_1="input_spec",
label_2="ground_truth",
fig_name=f"{save_dir_path}/input_ground/epoch_{epoch + 1}.png")
PlotMetrics.spectrum_comparison(pred_spec, ground_spec, ppm,
label_1="pred",
label_2="ground_truth",
fig_name=f"{save_dir_path}/pred_ground/epoch_{epoch + 1}.png")
class ToolsWandb:
@staticmethod
def config_flatten(config, parent_key='', sep='_'):
items = []
for key, value in config.items():
new_key = f"{parent_key}{sep}{key}" if parent_key else key
if isinstance(value, dict):
items.extend(ToolsWandb.config_flatten(value, new_key, sep).items())
else:
items.append((new_key, value))
return dict(items)
def get_dataset(dataset_configs):
dataset = FACTORY_DICT["dataset"][list(dataset_configs)[0]](
**dataset_configs[list(dataset_configs.keys())[0]]
)
return dataset
def set_samples_dataset(configs, samples, type_dataset='train_dataset', key_data="path_data"):
configs[type_dataset][list(configs[type_dataset].keys())[0]][key_data] = samples
return configs
def set_length_dataset(configs, len_, type_dataset='train_dataset', key_data="length_dataset"):
configs[type_dataset][list(configs[type_dataset].keys())[0]][key_data] = len_
return configs
def experiment_factory(configs):
train_dataset_configs = configs["train_dataset"]
train_dataset_key = list(configs["train_dataset"].keys())[0]
validation_dataset_configs = configs["valid_dataset"]
validation_dataset_key = list(configs["valid_dataset"].keys())[0]
if (not isinstance(train_dataset_configs[train_dataset_key]["path_data"], list)) and (
not isinstance(validation_dataset_configs[validation_dataset_key]["path_data"], list)):
print(f"length train: {len(os.listdir(train_dataset_configs[train_dataset_key]['path_data'])) // 2}")
print(
f"length validation: {len(os.listdir(validation_dataset_configs[validation_dataset_key]['path_data'])) // 2}")
model_configs = configs["model"]
optimizer_configs = configs["optimizer"]
criterion_configs = configs["loss"]
train_dataset = get_dataset(train_dataset_configs)
validation_dataset = get_dataset(validation_dataset_configs)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=configs["train"]["batch_size"], shuffle=True,
num_workers=configs["train"]["num_workers"]
)
validation_loader = torch.utils.data.DataLoader(
validation_dataset, batch_size=configs["valid"]["batch_size"], shuffle=False,
num_workers=configs["valid"]["num_workers"]
)
if type(model_configs) == dict:
model = FACTORY_DICT["model"][list(model_configs.keys())[0]](
**model_configs[list(model_configs.keys())[0]]
)
else:
model = FACTORY_DICT["model"][model_configs]()
optimizer = FACTORY_DICT["optimizer"][list(optimizer_configs.keys())[0]](
model.parameters(), **optimizer_configs[list(optimizer_configs.keys())[0]]
)
if type(criterion_configs) == dict:
criterion = FACTORY_DICT["loss"][list(criterion_configs.keys())[0]](
**criterion_configs[list(criterion_configs.keys())[0]]
)
else:
criterion = FACTORY_DICT["loss"][criterion_configs]()
return model, train_loader, validation_loader, optimizer, \
criterion
def run_train_epoch(model, optimizer, criterion, loader,
epoch):
model.to(DEVICE)
model.train()
running_loss = 0
running_mae = 0
running_mse = 0
with trange(len(loader), desc='Train Loop') as progress_bar:
for batch_idx, sample_batch in zip(progress_bar, loader):
optimizer.zero_grad()
input, labels = sample_batch[0], sample_batch[1]
input = input.to(DEVICE)
labels = labels.to(DEVICE)
prediction = model(input)
loss = criterion(prediction, labels)
result = calculate_metrics(prediction, labels)
running_mse += result['mse']
running_mae += result['mae']
running_loss += loss.item()
progress_bar.set_postfix(
desc=(f'[epoch: {epoch + 1:d}], iteration: {batch_idx:d}/{len(train_loader):d}, '
f'loss: {running_loss / (batch_idx + 1)} | '
f"MSE:{running_mse / (batch_idx + 1):.7f} | "
f"MAE:{running_mae / (batch_idx + 1):.7f}"
)
)
loss.backward()
optimizer.step()
if configs['wandb']["activate"]:
wandb.log({'train_loss': loss})
running_loss = (running_loss / len(loader))
return running_loss
def run_validation(model, criterion, loader,
epoch, configs):
with torch.no_grad():
torch.cuda.empty_cache()
gc.collect()
model.to(DEVICE)
model.eval()
running_loss = 0
running_mae = 0
running_mse = 0
with trange(len(loader), desc='Validation Loop') as progress_bar:
for batch_idx, sample_batch in zip(progress_bar, loader):
input, labels = sample_batch[0], sample_batch[1]
input = input.to(DEVICE)
labels = labels.to(DEVICE)
prediction = model(input)
loss = criterion(prediction, labels)
result = calculate_metrics(prediction, labels)
running_mse += result['mse']
running_mae += result['mae']
running_loss += loss.item()
progress_bar.set_postfix(
desc=(f"[Epoch {epoch + 1}] Loss: {running_loss / (batch_idx + 1)} | "
f"MSE:{running_mse / (batch_idx + 1):.7f} | "
f"MAE:{running_mae / (batch_idx + 1):.7f}"
))
loader_loss = (running_loss / len(loader))
loader_mean_mse = running_mse / len(loader)
loader_mean_mae = running_mae / len(loader)
if configs['wandb']["activate"]:
wandb.log({'mean_valid_loss': loss})
wandb.log({'mean_mae': loader_mean_mae})
wandb.log({'mean_mse': loader_mean_mse})
if configs['current_model']['save_model']:
save_path_model = f"{configs['current_model']['model_dir']}/{configs['current_model']['model_name']}.pt"
save_best_model(loader_loss, model, save_path_model)
if configs["valid_on_the_fly"]["activate"]:
valid_on_the_fly(model, epoch, configs, configs["basis_set_path"], configs["valid_on_the_fly"]["save_dir_path"])
return loader_loss
def get_params_lr_scheduler(configs):
activate = bool(configs["lr_scheduler"]["activate"])
scheduler_kwargs = configs["lr_scheduler"]["info"]
scheduler_type = configs["lr_scheduler"]["scheduler_type"]
return activate, scheduler_type, scheduler_kwargs
def calculate_parameters(model):
qtd_model = sum(p.numel() for p in model.parameters())
print(f"Number of parameters: {qtd_model}")
return
def run_training_experiment(model, train_loader, validation_loader, optimizer, custom_lr_scheduler,
criterion, configs
):
if configs['current_model']['save_model']:
os.makedirs(configs['current_model']['model_dir'], exist_ok=True)
calculate_parameters(model)
for epoch in range(0, configs["epochs"]):
train_loss = run_train_epoch(
model, optimizer, criterion, train_loader,
epoch
)
valid_loss = run_validation(
model, criterion, validation_loader,
epoch, configs
)
if custom_lr_scheduler is not None:
if custom_lr_scheduler.scheduler_type == "reducelronplateau":
custom_lr_scheduler.step(valid_loss)
else:
custom_lr_scheduler.step()
print("Current learning rate:", custom_lr_scheduler.scheduler.get_last_lr()[0])
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"config_file", type=str, help="Path to YAML configuration file"
)
args = parser.parse_args()
configs = read_yaml(args.config_file)
print("============ Delete .wandb path ============")
try:
shutil.rmtree("wandb/")
except:
pass
f_configurations = {}
f_configurations = ToolsWandb.config_flatten(configs)
model, train_loader, validation_loader, \
optimizer, criterion = experiment_factory(configs)
activate_lr_scheduler, scheduler_type, scheduler_kwargs = get_params_lr_scheduler(configs)
if activate_lr_scheduler:
custom_lr_scheduler = CustomLRScheduler(optimizer, scheduler_type, **scheduler_kwargs)
else:
custom_lr_scheduler = None
if configs['reload_from_existing_model']['activate']:
name_model = f"{configs['reload_from_existing_model']['model_dir']}/{configs['reload_from_existing_model']['model_name']}.pt"
load_dict = torch.load(name_model)
model.load_state_dict(load_dict['model_state_dict'])
if configs["valid_on_the_fly"]["activate"]:
valid_save_dir_path = configs["valid_on_the_fly"]["save_dir_path"]
os.makedirs(valid_save_dir_path, exist_ok=True)
clean_directory(valid_save_dir_path)
if configs['wandb']["activate"]:
wandb.init(project=configs['wandb']["project"],
reinit=True,
config=f_configurations,
entity=configs['wandb']["entity"],
save_code=False)
run_training_experiment(
model, train_loader, validation_loader, optimizer, custom_lr_scheduler,
criterion, configs
)
torch.cuda.empty_cache()
wandb.finish()