-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_metrics.py
88 lines (67 loc) · 3.25 KB
/
plot_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
"""
Maintainer: Gabriel Dias ([email protected])
Mateus Oliveira ([email protected])
Marcio Almeida ([email protected])
"""
import numpy as np
import matplotlib.pyplot as plt
from utils import NormalizeData
class PlotMetrics:
@staticmethod
def spectrum_comparison(spec_1, spec_2, ppm,
label_1, label_2, fig_name,):
normalizer = NormalizeData()
spec_1 = normalizer.min_max_normalize(spec_1)
spec_2 = normalizer.min_max_normalize(spec_2)
fig, ax = plt.subplots()
ax.plot(ppm, np.real(spec_1), label=label_1, color="black")
ax.plot(ppm, np.real(spec_2), label=label_2, color="red")
plt.xlim((5, 0))
plt.grid()
plt.legend()
plt.savefig(fig_name)
plt.close(fig)
@staticmethod
def plot_fitted_evaluation(data_signal, fitted_signal, fit_residual_signal, ground_truth_minus_fit, ppm_axis,
fig_name, spacing=1e4):
data_signal = np.real(data_signal)
fitted_signal = np.real(fitted_signal)
fit_residual_signal = np.real(fit_residual_signal)
ground_truth_minus_fit = np.real(ground_truth_minus_fit)
fig, ax = plt.subplots(figsize=(7, 7))
ax.plot(ppm_axis, data_signal, label="Input", color="black")
ax.plot(ppm_axis, fitted_signal + 1.2 * spacing, label="Fit", color="red")
ax.plot(ppm_axis, fit_residual_signal + 3.5 * spacing, label="Fit Residual", color="orange")
ax.plot(ppm_axis, ground_truth_minus_fit + 3.8 * spacing, label="Ground Truth minus Fit", color="green")
ax.set_xlabel("Chemical Shift (ppm)")
ax.yaxis.set_visible(False)
ax.set_title("Fitting Evaluation")
ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.2), ncol=4)
plt.tight_layout()
plt.xlim((5, 0))
plt.savefig(fig_name)
plt.close(fig)
@staticmethod
def plot_fitted_evaluation_beta(data_signal, fitted_signal, fit_residual_signal, ground_truth_minus_fit, ppm_axis,
fig_name, spacing=1e4):
data_signal = np.real(data_signal)
fitted_signal = np.real(fitted_signal)
fit_residual_signal = np.real(fit_residual_signal)
ground_truth_minus_fit = np.real(ground_truth_minus_fit)
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(ppm_axis, data_signal, label="Input", color="black")
ax.plot(ppm_axis, fitted_signal + 1.2 * spacing, label="Fit", color="red")
ax.plot(ppm_axis, fit_residual_signal + 3.5 * spacing, label="Fit Residual", color="orange")
ax.plot(ppm_axis, ground_truth_minus_fit + 3.8 * spacing, label="Ground Truth minus Fit", color="green")
ax.set_xlabel("Chemical Shift (ppm)")
ax.yaxis.set_visible(False)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_position(('outward', 10))
ax.spines['bottom'].set_linewidth(0.5)
ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.2), ncol=4)
plt.tight_layout()
plt.xlim((5, 0))
plt.savefig(fig_name, transparent=True, bbox_inches='tight')
plt.close(fig)