-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
146 lines (114 loc) · 5.66 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
"""
Maintainer: Gabriel Dias ([email protected])
Mateus Oliveira ([email protected])
"""
import torch
import yaml
import numpy as np
import h5py
from scipy import signal
import os
def set_device():
if torch.cuda.is_available():
dev = "cuda:0"
else:
dev = "cpu"
device = torch.device(dev)
print('Using {}'.format(device))
return device
def clean_directory(dir_path):
for file_name in os.listdir(dir_path):
file_absolute_path = os.path.join(dir_path, file_name)
if os.path.isfile(file_absolute_path):
os.remove(file_absolute_path)
elif os.path.isdir(file_absolute_path):
clean_directory(file_absolute_path)
os.rmdir(file_absolute_path)
def read_yaml(file: str) -> yaml.loader.FullLoader:
with open(file, "r") as yaml_file:
configurations = yaml.load(yaml_file, Loader=yaml.FullLoader)
return configurations
def zero_padding(matrix, output_shape=(224, 224)):
pad_width = ((0, output_shape[0] - matrix.shape[0]), (0, output_shape[1] - matrix.shape[1]))
padded_matrix = np.pad(matrix, pad_width, mode="constant")
return padded_matrix
def normalized_stft(fid, fs, larmorfreq, window_size, hop_size, window='hann', nfft=None):
noverlap = window_size - hop_size
if not signal.check_NOLA(window, window_size, noverlap):
raise ValueError("signal windowing fails Non-zero Overlap Add (NOLA) criterion; "
"STFT not invertible")
f, t, stft_coefficients = signal.stft(fid, fs=fs, nperseg=window_size, noverlap=noverlap,
nfft=nfft, return_onesided=False)
f = np.concatenate([np.split(f, 2)[1],
np.split(f, 2)[0]])
ppm = 4.65 + f / larmorfreq
stft_coefficients_ordered = np.concatenate([np.split(stft_coefficients, 2)[1],
np.split(stft_coefficients, 2)[0]])
stft_coefficients_ordered = np.flip(stft_coefficients_ordered, axis=0)
stft_coefficients_onesided = stft_coefficients_ordered[(ppm >= 0), :]
stft_coefficients_onesided_norm = stft_coefficients_onesided / (np.max(np.abs(stft_coefficients_onesided)))
return stft_coefficients_onesided_norm
class ReadDatasets:
@staticmethod
def read_h5_complete(filename: str) -> tuple[
np.ndarray, np.ndarray, np.ndarray, np.float64, np.float64, np.float64]:
with h5py.File(filename) as hf:
transients = hf["transient_specs"][()]
target_spectrum = hf["target_spectra"][()]
ppm = hf["ppm"][()]
fs = hf["fs"][()]
tacq = hf["tacq"][()]
larmorfreq = hf["larmorfreq"][()]
return transients, target_spectrum, ppm, fs, tacq, larmorfreq
@staticmethod
def read_h5_sample_track_1(filename: str) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
with h5py.File(filename) as hf:
ppm = hf["ppm"][()]
t = hf["t"][()]
transients = hf["transients"][()]
return transients, ppm, t
@staticmethod
def read_h5_sample_track_2(filename: str) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
with h5py.File(filename) as hf:
ppm = hf["ppm"][()]
t = hf["t"][()]
transients = hf['transient_fids'][()]
return transients, ppm, t
def read_h5_sample_track_3(filename: str) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray,
np.ndarray, np.ndarray]:
with h5py.File(filename) as hf:
input_ppm_down = hf['data_2048']["ppm"][()]
input_t_down = hf['data_2048']["t"][()]
input_transients_down = hf['data_2048']["transient_fids"][()]
input_ppm_up = hf['data_4096']["ppm"][()]
input_t_up = hf['data_4096']["t"][()]
input_transients_up = hf['data_4096']["transient_fids"][()]
return input_transients_down, input_ppm_down, input_t_down, \
input_transients_up, input_ppm_up, input_t_up
@staticmethod
def write_h5_track1_predict_submission(filename: str,
spectra_predict: np.ndarray,
ppm: np.ndarray):
with h5py.File(filename, "w") as hf:
hf.create_dataset("result_spectra", spectra_predict.shape, dtype=float, data=spectra_predict)
hf.create_dataset("ppm", ppm.shape, dtype=float, data=ppm)
@staticmethod
def write_h5_track2_predict_submission(filename: str,
spectra_predict: np.ndarray,
ppm: np.ndarray):
with h5py.File(filename, "w") as hf:
hf.create_dataset("result_spectra", spectra_predict.shape, dtype=float, data=spectra_predict)
hf.create_dataset("ppm", ppm.shape, dtype=float, data=ppm)
@staticmethod
def write_h5_track3_predict_submission(filename: str,
spectra_predict_down: np.ndarray,
ppm_down: np.ndarray,
spectra_predict_up: np.ndarray,
ppm_up: np.ndarray):
with h5py.File(filename, "w") as hf:
hf.create_dataset("result_spectra_2048", spectra_predict_down.shape, dtype=float,
data=spectra_predict_down)
hf.create_dataset("ppm_2048", ppm_down.shape, dtype=float, data=ppm_down)
hf.create_dataset("result_spectra_4096", spectra_predict_up.shape, dtype=float,
data=spectra_predict_up)
hf.create_dataset("ppm_4096", ppm_up.shape, dtype=float, data=ppm_up)