-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsetup.py
32 lines (29 loc) · 1.44 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import setuptools
from medseg import __version__
with open("README.md", "r") as fh:
long_description = fh.read()
found = setuptools.find_packages()
print(f"Found these packages to add: {found}")
setuptools.setup(
name="medseg",
version=__version__,
author="Diedre Carmo",
author_email="[email protected]",
description="Modified EfficientDet published in: Multitasking segmentation of lung and COVID-19 findings in CT scans using modified EfficientDet, UNet and MobileNetV3 models",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/MICLab-Unicamp/medseg",
packages=found,
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
python_requires='>=3.6',
install_requires=['setuptools', 'numpy', 'rich', 'pillow', 'scipy', 'tqdm', 'torch', 'pandas', 'torchvision', 'pytorch-lightning', 'efficientnet_pytorch', 'connected-components-3d', 'psutil', 'gputil', 'opencv-python', 'SimpleITK==2.0.2', 'pydicom', 'matplotlib'],
entry_points={
'console_scripts': ["medseg = medseg.run:main", "medseg_cpu = medseg.run:main_cpu"]
},
include_package_data=True,
package_data={'medseg': ["best_coedet.ckpt", "icon.png", "poly_lung.ckpt", "sing_a100_up_awd_step_raw_medseg_pos.ckpt", "sme2d_coedet_fiso.ckpt", "airway.ckpt", "parse.ckpt"]}
)