Skip to content

Commit e5c6fe5

Browse files
authored
Change in type promotion introduced in Numpy 2.0. Fixes to edf.py. (#527)
As discussed in #493, numpy 2.0 introduced changes to type promotion. The change is outlined at: https://numpy.org/devdocs/numpy_2_0_migration_guide.html#changes-to-numpy-data-type-promotion Running the tests in `weak_and_warn` raises the following warnings: ``` tests/io/test_convert.py::TestEdfToWfdb::test_edf_uniform /Users/tompollard/projects/wfdb-python/wfdb/io/convert/edf.py:409: UserWarning: result dtype changed due to the removal of value-based promotion from NumPy. Changed from int16 to int64. temp_all_sigs[i].flatten() - baseline[i] tests/io/test_convert.py::TestEdfToWfdb::test_edf_non_uniform /Users/tompollard/projects/wfdb-python/wfdb/io/convert/edf.py:420: UserWarning: result dtype changed due to the removal of value-based promotion from NumPy. Changed from int16 to int64. (temp_sig_data[start_ind:stop_ind] - baseline[i]) tests/io/test_convert.py::TestEdfToWfdb::test_edf_non_uniform /Users/tompollard/projects/wfdb-python/wfdb/io/convert/edf.py:414: UserWarning: result dtype changed due to the removal of value-based promotion from NumPy. Changed from int16 to int64. sig_data[:, i] = (temp_sig_data - baseline[i]) / adc_gain_all[i] ``` This pull request addresses the issue by setting `temp_all_sigs` and `temp_sig_data` to `np.int64`. For reference, `temp_all_sigs` and `temp_sig_data` are initially set as `np.int64`: https://github.com/MIT-LCP/wfdb-python/blob/c6d4fd9f05007ebc5f79dd07332f34410d7b8493/wfdb/io/convert/edf.py#L402-L404 `baseline` is set to `int64` here: https://github.com/MIT-LCP/wfdb-python/blob/c6d4fd9f05007ebc5f79dd07332f34410d7b8493/wfdb/io/convert/edf.py#L353-L355
2 parents c6d4fd9 + 262f494 commit e5c6fe5

File tree

1 file changed

+8
-4
lines changed

1 file changed

+8
-4
lines changed

wfdb/io/convert/edf.py

+8-4
Original file line numberDiff line numberDiff line change
@@ -402,23 +402,27 @@ def read_edf(
402402
temp_sig_data = np.fromfile(edf_file, dtype=np.int16)
403403
temp_sig_data = temp_sig_data.reshape((-1, sum(samps_per_block)))
404404
temp_all_sigs = np.hsplit(temp_sig_data, np.cumsum(samps_per_block)[:-1])
405+
405406
for i in range(n_sig):
406407
# Check if `samps_per_frame` has all equal values
407408
if samps_per_frame.count(samps_per_frame[0]) == len(samps_per_frame):
408409
sig_data[:, i] = (
409-
temp_all_sigs[i].flatten() - baseline[i]
410+
temp_all_sigs[i].flatten().astype(np.int64) - baseline[i]
410411
) / adc_gain_all[i]
411412
else:
412413
temp_sig_data = temp_all_sigs[i].flatten()
414+
413415
if samps_per_frame[i] == 1:
414-
sig_data[:, i] = (temp_sig_data - baseline[i]) / adc_gain_all[i]
416+
sig_data[:, i] = (
417+
temp_sig_data.astype(np.int64) - baseline[i]
418+
) / adc_gain_all[i]
415419
else:
416420
for j in range(sig_len):
417421
start_ind = j * samps_per_frame[i]
418422
stop_ind = start_ind + samps_per_frame[i]
419423
sig_data[j, i] = np.mean(
420-
(temp_sig_data[start_ind:stop_ind] - baseline[i])
421-
/ adc_gain_all[i]
424+
temp_sig_data[start_ind:stop_ind].astype(np.int64)
425+
- baseline[i] / adc_gain_all[i]
422426
)
423427

424428
# This is the closest I can get to the original implementation

0 commit comments

Comments
 (0)